Maximum correntropy criterion regression models with tending-to-zero scale parameters

Pub Date : 2023-12-09 DOI:10.1016/j.jspi.2023.106134
Lianqiang Yang , Ying Jing , Teng Li
{"title":"Maximum correntropy criterion regression models with tending-to-zero scale parameters","authors":"Lianqiang Yang ,&nbsp;Ying Jing ,&nbsp;Teng Li","doi":"10.1016/j.jspi.2023.106134","DOIUrl":null,"url":null,"abstract":"<div><p>Maximum correntropy criterion regression (MCCR) models have been well studied within the theoretical framework of statistical learning when the scale parameters take fixed values or go to infinity. This paper studies MCCR models with tending-to-zero scale parameters. It is revealed that the optimal learning rate of MCCR models is <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> in the asymptotic sense when the sample size <span><math><mi>n</mi></math></span> goes to infinity. In the case of finite samples, the performance and robustness of MCCR, Huber and the least square regression models are compared. The applications of these three methods to real data are also demonstrated.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823001039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Maximum correntropy criterion regression (MCCR) models have been well studied within the theoretical framework of statistical learning when the scale parameters take fixed values or go to infinity. This paper studies MCCR models with tending-to-zero scale parameters. It is revealed that the optimal learning rate of MCCR models is O(n1) in the asymptotic sense when the sample size n goes to infinity. In the case of finite samples, the performance and robustness of MCCR, Huber and the least square regression models are compared. The applications of these three methods to real data are also demonstrated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
尺度参数趋于零的最大熵标准回归模型
最大熵准则回归(MCCR)模型在尺度参数取固定值或无穷大时的统计学习理论框架内得到了很好的研究。本文研究了尺度参数趋于零的 MCCR 模型。研究发现,当样本量 n 变为无穷大时,MCCR 模型的最优学习率在渐近意义上为 O(n-1)。在有限样本的情况下,比较了 MCCR、Huber 和最小平方回归模型的性能和鲁棒性。同时还展示了这三种方法在实际数据中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1