Regression analysis of longitudinal data with mixed synchronous and asynchronous longitudinal covariates

Pub Date : 2023-12-09 DOI:10.1016/j.jspi.2023.106135
Zhuowei Sun , Hongyuan Cao , Li Chen , Jason P. Fine
{"title":"Regression analysis of longitudinal data with mixed synchronous and asynchronous longitudinal covariates","authors":"Zhuowei Sun ,&nbsp;Hongyuan Cao ,&nbsp;Li Chen ,&nbsp;Jason P. Fine","doi":"10.1016/j.jspi.2023.106135","DOIUrl":null,"url":null,"abstract":"<div><p><span>In linear models, omitting a covariate<span><span> that is orthogonal to covariates in the model does not result in biased coefficient estimation. This generally does not hold for longitudinal data, where additional assumptions are needed to get an unbiased coefficient estimation in addition to the </span>orthogonality<span> between omitted longitudinal covariates and longitudinal covariates in the model. We propose methods to mitigate the omitted variable bias under weaker assumptions. A two-step estimation procedure is proposed to infer the asynchronous longitudinal covariates when such covariates are observed. For mixed synchronous and asynchronous longitudinal covariates, we get a </span></span></span>parametric convergence rate for the coefficient estimation of the synchronous longitudinal covariates by the two-step method. Extensive simulation studies provide numerical support for the theoretical findings. We illustrate the performance of our method on a dataset from the Alzheimer’s Disease Neuroimaging Initiative study.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823001040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In linear models, omitting a covariate that is orthogonal to covariates in the model does not result in biased coefficient estimation. This generally does not hold for longitudinal data, where additional assumptions are needed to get an unbiased coefficient estimation in addition to the orthogonality between omitted longitudinal covariates and longitudinal covariates in the model. We propose methods to mitigate the omitted variable bias under weaker assumptions. A two-step estimation procedure is proposed to infer the asynchronous longitudinal covariates when such covariates are observed. For mixed synchronous and asynchronous longitudinal covariates, we get a parametric convergence rate for the coefficient estimation of the synchronous longitudinal covariates by the two-step method. Extensive simulation studies provide numerical support for the theoretical findings. We illustrate the performance of our method on a dataset from the Alzheimer’s Disease Neuroimaging Initiative study.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
使用混合同步和非同步纵向协变量对纵向数据进行回归分析
在线性模型中,省略一个与模型中协变量正交的协变量不会导致有偏差的系数估计。但纵向数据一般不存在这种情况,除了忽略的纵向协变量与模型中的纵向协变量之间的正交性之外,还需要额外的假设才能获得无偏的系数估计。我们提出了在较弱假设条件下减轻遗漏变量偏差的方法。我们提出了一个两步估计程序,用于在观测到非同步纵向协变量时推断此类协变量。对于混合同步和非同步纵向协变量,我们通过两步法得到了同步纵向协变量系数估计的参数收敛率。大量的模拟研究为理论结论提供了数值支持。我们在阿尔茨海默病神经影像倡议研究的数据集上说明了我们的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1