Intrinsically asymmetric atomic character regulates piezoelectricity in two-dimensional materials

IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Frontiers of Physics Pub Date : 2023-12-11 DOI:10.1007/s11467-023-1348-5
Yun-Qin Li, Qi-Wen He, Dai-Song Tang, Xiao Shang, Xiao-Chun Wang
{"title":"Intrinsically asymmetric atomic character regulates piezoelectricity in two-dimensional materials","authors":"Yun-Qin Li,&nbsp;Qi-Wen He,&nbsp;Dai-Song Tang,&nbsp;Xiao Shang,&nbsp;Xiao-Chun Wang","doi":"10.1007/s11467-023-1348-5","DOIUrl":null,"url":null,"abstract":"<div><p>Decreasing of layer thickness causes the decrease of polarization until it disappears due to the existence of depolarization field. Therefore, the search for strong piezoelectric materials is highly desirable for multifunctional ultra-thin piezoelectric devices. Herein, we propose a common strategy for achieving strong piezoelectric materials through the electronic asymmetry induced by the intrinsically asymmetric atomic character of different chalcogen atoms. Accordingly, in the tetrahedral lattice structures, for example, M<sub>4</sub>X<sub>3</sub>Y<sub>3</sub> (M = Pd/Ni, X/Y = S, Se or Te, X ≠ Y) monolayers are proved to display excellent out-of-plane piezoelectricity. Ni<sub>4</sub>Se<sub>3</sub>Te<sub>3</sub> possesses the largest piezoelectric coefficient <i>d</i><sub>33</sub> of 61.57 pm/V, which is much larger than that of most 2D materials. Enhancing the electronic asymmetry further increases the out-of-plane piezoelectricity of Janus M<sub>4</sub>X<sub>3</sub>Y<sub>3</sub> materials. Correspondingly, the out-of-plane piezoelectricity is positively correlated with the ratio of electronegativity difference (<i>R</i><sub><i>ed</i></sub>) and the electric dipole moment (<i>P</i>). This work provides alternative materials for energy harvesting nano-devices or self-energized wearable devices, and supplies a valuable guideline for predicting 2D materials with strong out-of-plane piezoelectricity.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 3","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1348-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Decreasing of layer thickness causes the decrease of polarization until it disappears due to the existence of depolarization field. Therefore, the search for strong piezoelectric materials is highly desirable for multifunctional ultra-thin piezoelectric devices. Herein, we propose a common strategy for achieving strong piezoelectric materials through the electronic asymmetry induced by the intrinsically asymmetric atomic character of different chalcogen atoms. Accordingly, in the tetrahedral lattice structures, for example, M4X3Y3 (M = Pd/Ni, X/Y = S, Se or Te, X ≠ Y) monolayers are proved to display excellent out-of-plane piezoelectricity. Ni4Se3Te3 possesses the largest piezoelectric coefficient d33 of 61.57 pm/V, which is much larger than that of most 2D materials. Enhancing the electronic asymmetry further increases the out-of-plane piezoelectricity of Janus M4X3Y3 materials. Correspondingly, the out-of-plane piezoelectricity is positively correlated with the ratio of electronegativity difference (Red) and the electric dipole moment (P). This work provides alternative materials for energy harvesting nano-devices or self-energized wearable devices, and supplies a valuable guideline for predicting 2D materials with strong out-of-plane piezoelectricity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本质上不对称的原子特性调节二维材料的压电性
由于去极化场的存在,层厚度的减小会导致极化的减弱直至消失。因此,对于多功能超薄压电器件来说,寻找强压电材料是非常理想的。在此,我们提出了一种实现强压电材料的通用策略,即通过不同钙原原子固有的不对称原子特性引起的电子不对称来实现强压电材料。因此,在四面体晶格结构中,例如 M4X3Y3(M = Pd/Ni,X/Y = S、Se 或 Te,X ≠ Y)单层已被证明具有优异的面外压电性。Ni4Se3Te3 的最大压电系数 d33 为 61.57 pm/V,远远大于大多数二维材料。增强电子不对称性可进一步提高 Janus M4X3Y3 材料的面外压电性。相应地,面外压电性与电负性差(Red)和电偶极矩(P)的比值呈正相关。这项研究为能量收集纳米器件或自供电可穿戴设备提供了替代材料,并为预测具有强平面外压电性的二维材料提供了宝贵的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Physics
Frontiers of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
9.20
自引率
9.30%
发文量
898
审稿时长
6-12 weeks
期刊介绍: Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include: Quantum computation and quantum information Atomic, molecular, and optical physics Condensed matter physics, material sciences, and interdisciplinary research Particle, nuclear physics, astrophysics, and cosmology The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.
期刊最新文献
Erratum to: Noisy intermediate-scale quantum computers Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters Bayesian method for fitting the low-energy constants in chiral perturbation theory Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1