Honglei Xue , Yue Peng , Qiushi Jing , Jiuren Zhou , Genquan Han , Wangyang Fu
{"title":"Sensing with extended gate negative capacitance ferroelectric field-effect transistors","authors":"Honglei Xue , Yue Peng , Qiushi Jing , Jiuren Zhou , Genquan Han , Wangyang Fu","doi":"10.1016/j.chip.2023.100074","DOIUrl":null,"url":null,"abstract":"<div><p>With major signal analytical elements situated away from the measurement environment, extended gate (EG) ion-sensitive field-effect transistors (ISFETs) offer prospects for whole chip circuit design and system integration of chemical sensors. In this work, a highly sensitive and power-efficient ISFET was proposed based on a metal–ferroelectric–insulator gate stack with negative capacitance–induced super-steep subthreshold swing and ferroelectric memory function. Along with a remotely connected EG electrode, the architecture facilitates diverse sensing functions for future establishment of smart biochemical sensor platforms.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 1","pages":"Article 100074"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472323000370/pdfft?md5=93e20422bfd5b4781204092c8a11d70d&pid=1-s2.0-S2709472323000370-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472323000370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With major signal analytical elements situated away from the measurement environment, extended gate (EG) ion-sensitive field-effect transistors (ISFETs) offer prospects for whole chip circuit design and system integration of chemical sensors. In this work, a highly sensitive and power-efficient ISFET was proposed based on a metal–ferroelectric–insulator gate stack with negative capacitance–induced super-steep subthreshold swing and ferroelectric memory function. Along with a remotely connected EG electrode, the architecture facilitates diverse sensing functions for future establishment of smart biochemical sensor platforms.