首页 > 最新文献

Chip最新文献

英文 中文
Q-enhancement of piezoelectric micro-oven-controlled MEMS resonators using honeycomb lattice phononic crystals 利用蜂巢晶格声波晶体增强压电微炉控 MEMS 谐振器的 Q 值
Pub Date : 2024-09-19 DOI: 10.1016/j.chip.2024.100108
Yuhao Xiao , Kewen Zhu , Jinzhao Han , Sheng Liu , Guoqiang Wu
In this article, a two-dimensional (2D) honeycomb lattice phononic crystal (PnC) based micro-oven with large bandgap is introduced to be integrated with piezoelectric microelectromechanical systems (MEMS) resonator to reduce anchor loss for timing applications. Finite element method (FEM) analysis and experimental measurement were performed to verify that the proposed PnC micro-oven design gives advantage in quality factor (Q). The measurement results demonstrate that the resonator with 2D honeycomb lattice PnC micro-oven shows a repeatable 1.7 times improvement of average Q compared with the bare one. The resonator with micro-oven control was further measured for frequency stability. The proposed piezoelectric micro-oven-controlled MEMS resonator achieves a frequency stability of less than ±10 ppb in a stable environment, which indicates promising potential for application in high-end timing field.
本文介绍了一种基于二维(2D)蜂窝晶格声子晶体(PnC)的大带隙微匀炉,该微匀炉与压电微机电系统(MEMS)谐振器集成,可降低定时应用中的锚定损耗。通过有限元法(FEM)分析和实验测量,验证了所提出的 PnC 微炉设计在品质因数(Q)方面的优势。测量结果表明,与裸谐振器相比,带有二维蜂窝晶格 PnC 微凹槽的谐振器的平均 Q 值可重复提高 1.7 倍。我们还进一步测量了带有微凹槽控制的谐振器的频率稳定性。所提出的压电微凹槽控制 MEMS 谐振器在稳定环境下的频率稳定性小于 ±10 ppb,这表明它在高端计时领域的应用潜力巨大。
{"title":"Q-enhancement of piezoelectric micro-oven-controlled MEMS resonators using honeycomb lattice phononic crystals","authors":"Yuhao Xiao ,&nbsp;Kewen Zhu ,&nbsp;Jinzhao Han ,&nbsp;Sheng Liu ,&nbsp;Guoqiang Wu","doi":"10.1016/j.chip.2024.100108","DOIUrl":"10.1016/j.chip.2024.100108","url":null,"abstract":"<div><div>In this article, a two-dimensional (2D) honeycomb lattice phononic crystal (PnC) based micro-oven with large bandgap is introduced to be integrated with piezoelectric microelectromechanical systems (MEMS) resonator to reduce anchor loss for timing applications. Finite element method (FEM) analysis and experimental measurement were performed to verify that the proposed PnC micro-oven design gives advantage in quality factor (<em>Q</em>). The measurement results demonstrate that the resonator with 2D honeycomb lattice PnC micro-oven shows a repeatable 1.7 times improvement of average <em>Q</em> compared with the bare one. The resonator with micro-oven control was further measured for frequency stability. The proposed piezoelectric micro-oven-controlled MEMS resonator achieves a frequency stability of less than ±10 ppb in a stable environment, which indicates promising potential for application in high-end timing field.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 4","pages":"Article 100108"},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suspended nanomembrane silicon photonic integrated circuits 悬浮纳米膜硅光子集成电路
Pub Date : 2024-09-01 DOI: 10.1016/j.chip.2024.100104
Rongxiang Guo , Qiyue Lang , Zunyue Zhang , Haofeng Hu , Tiegen Liu , Jiaqi Wang , Zhenzhou Cheng

Leveraging the low linear and nonlinear absorption loss of silicon at mid-infrared (mid-IR) wavelengths, silicon photonic integrated circuits (PICs) have attracted significant attention for mid-IR applications including optical sensing, spectroscopy, and nonlinear optics. However, mid-IR silicon PICs typically show moderate performance compared to state-of-the-art silicon photonic devices operating in the telecommunication band. Here, we proposed and demonstrated suspended nanomembrane silicon (SNS) PICs with light-guiding within deep-subwavelength waveguide thickness for operation in the short-wavelength mid-IR region. We demonstrated key building components, namely, grating couplers, waveguide arrays, micro-resonators, etc., which exhibit excellent performances in bandwidths, back reflections, quality factors, and fabrication tolerance. Moreover, the results show that the proposed SNS PICs have high compatibility with the multi-project wafer foundry services. Our study provides an unprecedented platform for mid-IR integrated photonics and applications.

利用硅在中红外波段的低线性和非线性吸收损耗,硅光子集成电路(PIC)在中红外应用(包括光学传感、光谱学和非线性光学)中备受关注。然而,与在电信波段工作的最先进硅光子器件相比,中红外硅光子集成电路通常性能一般。在此,我们提出并演示了悬浮纳米膜硅(SNS)集成电路,该集成电路在深亚波长波导厚度内具有光导功能,可在短波长中红外区域工作。我们展示了光栅耦合器、波导阵列、微谐振器等关键构建元件,这些元件在带宽、背反射、品质因数和制造容差等方面表现出色。此外,研究结果表明,所提出的 SNS PIC 与多项目晶圆代工服务具有很高的兼容性。我们的研究为中红外集成光子学和应用提供了一个前所未有的平台。
{"title":"Suspended nanomembrane silicon photonic integrated circuits","authors":"Rongxiang Guo ,&nbsp;Qiyue Lang ,&nbsp;Zunyue Zhang ,&nbsp;Haofeng Hu ,&nbsp;Tiegen Liu ,&nbsp;Jiaqi Wang ,&nbsp;Zhenzhou Cheng","doi":"10.1016/j.chip.2024.100104","DOIUrl":"10.1016/j.chip.2024.100104","url":null,"abstract":"<div><p><strong>Leveraging the low linear and nonlinear absorption loss of silicon at</strong> <strong>mid-infrared</strong> <strong>(mid-IR) wavelengths, silicon photonic integrated circuits (PICs) have attracted significant attention for</strong> <strong>mid-IR</strong> <strong>applications including optical sensing, spectroscopy, and nonlinear optics. However,</strong> <strong>mid-IR</strong> <strong>silicon PICs typically show moderate performance compared to</strong> <strong>state-of-the-art</strong> <strong>silicon photonic devices operating in the telecommunication band. Here, we proposed and demonstrated suspended nanomembrane silicon (SNS) PICs with light</strong><strong>-</strong><strong>guiding within</strong> <strong>deep-subwavelength</strong> <strong>waveguide thickness for operation in the short</strong><strong>-</strong><strong>wavelength</strong> <strong>mid-IR</strong> <strong>region. We demonstrated key building components, namely, grating couplers, waveguide arrays,</strong> <strong>micro-resonators,</strong> <strong>etc.,</strong> <strong>which</strong> <strong>exhibit</strong> <strong>excellent performances in bandwidths, back reflections, quality factors, and fabrication tolerance. Moreover,</strong> <strong>the results</strong> <strong>show that the proposed SNS PICs have high compatibility with the</strong> <strong>multi-project</strong> <strong>wafer foundry services. Our study provides an unprecedented platform for</strong> <strong>mid-IR</strong> <strong>integrated</strong> <strong>photonics and applications.</strong></p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 3","pages":"Article 100104"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000224/pdfft?md5=cd27c1841a4799cf4cf48ad7ef718a52&pid=1-s2.0-S2709472324000224-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141691844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical performance and reliability analysis of vertical gallium nitride Schottky barrier diodes with dual-ion implanted edge termination 具有双离子植入边缘终端的垂直 GaN 肖特基势垒二极管的电气性能和可靠性分析
Pub Date : 2024-09-01 DOI: 10.1016/j.chip.2024.100105
Bo Li , Jinpei Lin , Linfei Gao , Zhengweng Ma , Huakai Yang , Zhihao Wu , Hsien-Chin Chiu , Hao-Chung Kuo , Chunfu Zhang , Zhihong Liu , Shuangwu Huang , Wei He , Xinke Liu

In this study, a gallium nitride (GaN) substrate and its 15 μm epitaxial layer were entirely grown by adopting the hydride vapor phase epitaxy (HVPE) technique. To enhance the breakdown voltage (VBR) of vertical GaN-on-GaN Schottky barrier diodes (SBDs), a dual ion coimplantation of carbon and helium was employed to create the edge termination. The resulting devices exhibited a low turn-on voltage of 0.55 V, a high Ion/Ioff ratio of approximately 109, and a low specific on-resistance of 1.93 mΩ cm2. When the ion implantation edge was terminated, the maximum VBR of the devices reached 1575 V, with an average improvement of 126%. These devices demonstrated a high figure of merit (FOM) of 1.28 GW cm–2 and showed excellent reliability during pulse stress testing.

在这项研究中,采用氢化物气相外延(HVPE)技术完全生长了氮化镓(GaN)衬底及其 15 μm 外延层。为了提高垂直氮化镓-氮化镓肖特基势垒二极管(SBD)的击穿电压(VBR),采用了碳和氦的双离子共植入来创建边缘终端。由此产生的器件具有 0.55 V 的低导通电压、约 109 的高离子/关断比和 1.93 mΩ cm2 的低比导通电阻。当离子注入边缘终止时,器件的最大 VBR 达到 1575 V,平均提高了 126%。这些器件的优点系数(FOM)高达 1.28 GW cm-2,并在脉冲应力测试中表现出卓越的可靠性。
{"title":"Electrical performance and reliability analysis of vertical gallium nitride Schottky barrier diodes with dual-ion implanted edge termination","authors":"Bo Li ,&nbsp;Jinpei Lin ,&nbsp;Linfei Gao ,&nbsp;Zhengweng Ma ,&nbsp;Huakai Yang ,&nbsp;Zhihao Wu ,&nbsp;Hsien-Chin Chiu ,&nbsp;Hao-Chung Kuo ,&nbsp;Chunfu Zhang ,&nbsp;Zhihong Liu ,&nbsp;Shuangwu Huang ,&nbsp;Wei He ,&nbsp;Xinke Liu","doi":"10.1016/j.chip.2024.100105","DOIUrl":"10.1016/j.chip.2024.100105","url":null,"abstract":"<div><p>In this study, a gallium nitride (GaN) substrate and its 15 μm epitaxial layer were entirely grown by adopting the hydride vapor phase epitaxy (HVPE) technique. To enhance the breakdown voltage (<em>V</em><sub>BR</sub>) of vertical GaN-on-GaN Schottky barrier diodes (SBDs), a dual ion coimplantation of carbon and helium was employed to create the edge termination. The resulting devices exhibited a low turn-on voltage of 0.55 V, a high <em>I</em><sub>on</sub>/<em>I</em><sub>off</sub> ratio of approximately 10<sup>9</sup>, and a low specific on-resistance of 1.93 mΩ cm<sup>2</sup>. When the ion implantation edge was terminated, the maximum <em>V</em><sub>BR</sub> of the devices reached 1575 V, with an average improvement of 126%. These devices demonstrated a high figure of merit (FOM) of 1.28 GW cm<sup>–2</sup> and showed excellent reliability during pulse stress testing.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 3","pages":"Article 100105"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000236/pdfft?md5=39e7a0c9e23864accd3ca2de9e3d77c6&pid=1-s2.0-S2709472324000236-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Channel-bias-controlled reconfigurable silicon nanowire transistors via an asymmetric electrode contact strategy 通过非对称电极接触策略实现通道偏压控制的可重构硅纳米线晶体管
Pub Date : 2024-09-01 DOI: 10.1016/j.chip.2024.100098

Reconfigurable field-effect transistors (R-FETs) that can dynamically reconfigure the transistor polarity, from n-type to p-type channel or vice versa, represent a promising new approach to reduce the logic complexity and granularity of programmable electronics. Although R-FETs have been successfully demonstrated upon silicon nanowire (SiNW) channels, a pair of extra program gates is still needed to control the source/drain (S/D) contacts. In this work, we propose a rather simple single gate R-FET structure with an asymmetric S/D electrode contact, where the FET channel polarity can be altered by changing the sign of channel bias Vds. These R-FETs were fabricated upon an orderly array of planar SiNW channels, grown via in-plane solid-liquid-solid mechanism, and contacted by Ti/Al and Pt/Au at the S/D electrodes, respectively. Remarkably, this channel-bias-controlled R-FET strategy has been successfully testified and implemented upon both p-type-doped (with indium dopants) or n-type-doped (phosphorus) SiNW channels, whereas the R-FET prototypes demonstrate an impressive high Ion/off ratio of > 106 and a steep subthreshold swing of 79 mV/dec. These results indicate a rather simple, compact and generic enough R-FET strategy for the construction of a new generation of SiNW-based programmable and low-power electronics.

可重构场效应晶体管(R-FET)能动态重构晶体管极性,从 n 型通道到 p 型通道,反之亦然,是降低逻辑复杂性和可编程电子器件粒度的一种很有前途的新方法。虽然 R 型场效应晶体管已在硅纳米线 (SiNW) 沟道上成功演示,但仍需要一对额外的编程门来控制源极/漏极 (S/D) 触点。在这项工作中,我们提出了一种具有非对称 S/D 电极触点的相当简单的单栅极 R-FET 结构,通过改变沟道偏压 Vds 的符号可以改变 FET 沟道的极性。这些 R-FET 是在平面 SiNW 沟道的有序阵列上制造的,通过平面内固-液-固机制生长,并在 S/D 电极上分别与 Ti/Al 和 Pt/Au 接触。值得注意的是,这种沟道偏压控制的 R-FET 策略已在掺杂 p 型(含铟)或 n 型(磷)的 SiNW 沟道上得到成功验证和实施,而 R-FET 原型则表现出令人印象深刻的 106 的高离子/关断比和 79 mV/dec 的陡峭次阈值摆幅。这些结果表明,对于构建基于 SiNW 的新一代可编程低功耗电子器件而言,R-FET 是一种相当简单、紧凑和通用的策略。
{"title":"Channel-bias-controlled reconfigurable silicon nanowire transistors via an asymmetric electrode contact strategy","authors":"","doi":"10.1016/j.chip.2024.100098","DOIUrl":"10.1016/j.chip.2024.100098","url":null,"abstract":"<div><p>Reconfigurable field-effect transistors (R-FETs) that can dynamically reconfigure the transistor polarity, from n-type to p-type channel or vice versa, represent a promising new approach to reduce the logic complexity and granularity of programmable electronics. Although R-FETs have been successfully demonstrated upon silicon nanowire (SiNW) channels, a pair of extra program gates is still needed to control the source/drain (S/D) contacts. In this work, we propose a rather simple single gate R-FET structure with an asymmetric S/D electrode contact, where the FET channel polarity can be altered by changing the sign of channel bias <em>V</em><sub>ds</sub>. These R-FETs were fabricated upon an orderly array of planar SiNW channels, grown via in-plane solid-liquid-solid mechanism, and contacted by Ti/Al and Pt/Au at the S/D electrodes, respectively. Remarkably, this channel-bias-controlled R-FET strategy has been successfully testified and implemented upon both p-type-doped (with indium dopants) or n-type-doped (phosphorus) SiNW channels, whereas the R-FET prototypes demonstrate an impressive high <em>I</em><sub>on/off</sub> ratio of &gt; 10<sup>6</sup> and a steep subthreshold swing of 79 mV/dec. These results indicate a rather simple, compact and generic enough R-FET strategy for the construction of a new generation of SiNW-based programmable and low-power electronics.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 3","pages":"Article 100098"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000169/pdfft?md5=e3070abd5dfb82b3bdcb7e25f29beb8d&pid=1-s2.0-S2709472324000169-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141411691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly sensitive diamond X-ray detector array for high-temperature applications 用于高温应用的高灵敏度金刚石 X 射线探测器阵列
Pub Date : 2024-09-01 DOI: 10.1016/j.chip.2024.100106
Wenjie Dou , Chaonan Lin , Wei Fan , Xun Yang , Chao Fang , Huaping Zang , Shaoyi Wang , Congxu Zhu , Zhi Zheng , Weimin Zhou , Chongxin Shan
Diamond is a highly suitable material for X-ray detectors that can function effectively in harsh environments due to its unique properties such as ultrawide bandgap, high radiation resistance, excellent carrier mobility as well as remarkable chemical and thermal stability. However, the sensitivity of diamond X-ray detectors needs further improvement due to the relatively low X-ray absorption efficiency of diamond, and the exploration of single-crystal diamond array imaging still remains unexplored. In the current work, a 10 × 10 X-ray photodetector array was constructed from single-crystal diamond. To improve the sensitivity of the diamond X-ray detector, an asymmetric sandwich electrode structure was utilized. Additionally, trenches were created through laser cutting to prevent crosstalk between adjacent pixels. The diamond X-ray detector array exhibits exceptional performance, including a low detection limit of 4.9 nGy s−1, a sensitivity of 14.3 mC Gy−1 cm−2, and a light-dark current ratio of 18,312, which are among the most favorable values ever reported for diamond X-ray detectors. Furthermore, these diamond X-ray detectors can operate at high temperatures up to 450 °C, making them suitable for development in harsh environments.
金刚石具有超宽带隙、高抗辐射性、优异的载流子迁移率以及出色的化学和热稳定性等独特性能,是一种非常适合用于 X 射线探测器的材料,可在恶劣环境中有效发挥作用。然而,由于金刚石对 X 射线的吸收效率相对较低,因此金刚石 X 射线探测器的灵敏度有待进一步提高,而单晶金刚石阵列成像的探索仍处于起步阶段。在此,我们用单晶金刚石构建了一个 10 × 10 的 X 射线光电探测器阵列。为了提高金刚石 X 射线探测器的灵敏度,采用了非对称三明治电极结构。此外,还通过激光切割形成沟槽,以防止相邻像素之间发生串扰。金刚石 X 射线探测器阵列显示出卓越的性能,包括 4.9 nGy s 的低检测限、14.3 mC Gy cm 的灵敏度和 18,312 的明暗电流比,这些都是迄今为止所报道的金刚石 X 射线探测器中最理想的数值。此外,这些金刚石 X 射线探测器可在高达 450 °C 的高温下工作,因此适合在恶劣环境中开发。
{"title":"Highly sensitive diamond X-ray detector array for high-temperature applications","authors":"Wenjie Dou ,&nbsp;Chaonan Lin ,&nbsp;Wei Fan ,&nbsp;Xun Yang ,&nbsp;Chao Fang ,&nbsp;Huaping Zang ,&nbsp;Shaoyi Wang ,&nbsp;Congxu Zhu ,&nbsp;Zhi Zheng ,&nbsp;Weimin Zhou ,&nbsp;Chongxin Shan","doi":"10.1016/j.chip.2024.100106","DOIUrl":"10.1016/j.chip.2024.100106","url":null,"abstract":"<div><div>Diamond is a highly suitable material for X-ray detectors that can function effectively in harsh environments due to its unique properties such as ultrawide bandgap, high radiation resistance, excellent carrier mobility as well as remarkable chemical and thermal stability. However, the sensitivity of diamond X-ray detectors needs further improvement due to the relatively low X-ray absorption efficiency of diamond, and the exploration of single-crystal diamond array imaging still remains unexplored. In the current work, a 10 × 10 X-ray photodetector array was constructed from single-crystal diamond. To improve the sensitivity of the diamond X-ray detector, an asymmetric sandwich electrode structure was utilized. Additionally, trenches were created through laser cutting to prevent crosstalk between adjacent pixels. The diamond X-ray detector array exhibits exceptional performance, including a low detection limit of 4.9 nGy s<sup>−1</sup>, a sensitivity of 14.3 mC Gy<sup>−1</sup> cm<sup>−2</sup>, and a light-dark current ratio of 18,312, which are among the most favorable values ever reported for diamond X-ray detectors. Furthermore, these diamond X-ray detectors can operate at high temperatures up to 450 °C, making them suitable for development in harsh environments.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 3","pages":"Article 100106"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000248/pdfft?md5=641348a92d64c73eaa83ace8518de946&pid=1-s2.0-S2709472324000248-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges and recent advances in HfO2-based ferroelectric films for non-volatile memory applications 非易失性存储器应用中基于 HfO2 的铁电薄膜所面临的挑战和最新进展
Pub Date : 2024-09-01 DOI: 10.1016/j.chip.2024.100101
The emergence of data-centric applications such as artificial intelligence (AI), machine learning, and the Internet of Things (IoT), has promoted surges in demand for storage memories with high operating speed and nonvolatile characteristics. HfO2-based ferroelectric memory technologies, which emerge as a promising alternative, have attracted considerable attention due to their high performance, energy efficiency, and full compatibility with the standard complementary metal-oxide-semiconductors (CMOS) process. These nonvolatile storage elements, such as ferroelectric random access memory (FeRAM), ferroelectric field-effect transistors (FeFETs), and ferroelectric tunnel junctions (FTJs), possess different data access mechanisms, individual merits, and specific application boundaries in next-generation memories or even beyond von Neumann architecture. This paper provides an overview of ferroelectric HfO2 memory technologies, addresses the current challenges, and offers insights into future research directions and prospects.
人工智能(AI)、机器学习和物联网(IoT)等以数据为中心的应用的出现,推动了对具有高运行速度和非易失性特性的存储存储器的需求激增。基于 HfO2 的铁电存储器技术因其高性能、高能效以及与标准互补金属氧化物半导体(CMOS)工艺完全兼容而备受关注,成为一种前景广阔的替代技术。这些非易失性存储元件,如铁电随机存取存储器(FeRAM)、铁电场效应晶体管(FeFET)和铁电隧道结(FTJ),拥有不同的数据存取机制、各自的优点以及在下一代存储器甚至超越冯-诺依曼架构的特定应用边界。本文概述了铁电 HfO2 存储器技术,探讨了当前面临的挑战,并对未来的研究方向和前景提出了见解。
{"title":"Challenges and recent advances in HfO2-based ferroelectric films for non-volatile memory applications","authors":"","doi":"10.1016/j.chip.2024.100101","DOIUrl":"10.1016/j.chip.2024.100101","url":null,"abstract":"<div><div>The emergence of data-centric applications such as artificial intelligence (AI), machine learning, and the Internet of Things (IoT), has promoted surges in demand for storage memories with high operating speed and nonvolatile characteristics. HfO<sub>2</sub>-based ferroelectric memory technologies, which emerge as a promising alternative, have attracted considerable attention due to their high performance, energy efficiency, and full compatibility with the standard complementary metal-oxide-semiconductors (CMOS) process. These nonvolatile storage elements, such as ferroelectric random access memory (FeRAM), ferroelectric field-effect transistors (FeFETs), and ferroelectric tunnel junctions (FTJs), possess different data access mechanisms, individual merits, and specific application boundaries in next-generation memories or even beyond von Neumann architecture. This paper provides an overview of ferroelectric HfO<sub>2</sub> memory technologies, addresses the current challenges, and offers insights into future research directions and prospects.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 3","pages":"Article 100101"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141394538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A universal optoelectronic imaging platform with wafer-scale integration of two-dimensional semiconductors 二维半导体晶圆级集成的通用光电成像平台
Pub Date : 2024-08-08 DOI: 10.1016/j.chip.2024.100107
Xinyu Wang , Die Wang , Yuchen Tian , Jing Guo , Jinshui Miao , Weida Hu , Hailu Wang , Kang Liu , Lei Shao , Saifei Gou , Xiangqi Dong , Hesheng Su , Chuming Sheng , Yuxuan Zhu , Zhejia Zhang , Jinshu Zhang , Qicheng Sun , Zihan Xu , Peng Zhou , Honglei Chen , Wenzhong Bao
Photodetectors (PDs) are crucial in modern society as they enable the detection of a diverse range of light-based signals. With the exponential increase in their development, materials are being used to create a wide range of PDs that play critical roles in enabling various applications and technologies. Image sensor technology has been hindered due to the lack of a universal system that can integrate all types of PDs with silicon-based readout integrated circuits (ROICs). To address this issue, we conducted experiments adopting two-dimensional materials as an example. High-performance MoS2-/MoTe2-based PDs were fabricated in the current work and the most suitable ROICs were identified to pair with them. This established a solid foundation for further researches in the field of image sensors. We developed and implemented a versatile testing system that uses a printed circuit board to connect the PD and ROIC. After the ROIC generates the sampled signal, it is collected and processed by algorithms, which overcome device uniformity limitations and produce a high-quality image that is visible to the naked eye. This universal system can be used with a wide range of PD and ROIC types made from different materials, making it highly convenient for diverse testing applications and the development of diverse image sensor types. This robust new platform is expected to spur further innovation and advancements in this rapidly developing field.
光电探测器(PD)在现代社会中至关重要,因为它们能够检测各种光信号。随着光电探测器发展的指数级增长,各种材料被用来制造各种光电探测器,它们在实现各种应用和技术方面发挥着至关重要的作用。由于缺乏能将所有类型的光导二极管与硅基读出集成电路(ROIC)集成在一起的通用系统,图像传感器技术一直受到阻碍。为了解决这个问题,我们以二维材料为例进行了实验。我们制造了基于 MoS/MoTe 的高性能 PD,并确定了最适合与之配对的 ROIC。这为图像传感器领域的进一步研究奠定了坚实的基础。我们开发并实施了一种多功能测试系统,该系统使用印刷电路板连接 PD 和 ROIC。ROIC 生成采样信号后,通过算法对其进行采集和处理,从而克服器件均匀性的限制,生成肉眼可见的高质量图像。这种通用系统可与多种不同材料制成的 PD 和 ROIC 配合使用,为各种测试应用和不同图像传感器类型的开发提供了极大的便利。这一强大的新平台有望推动这一快速发展领域的进一步创新和进步。
{"title":"A universal optoelectronic imaging platform with wafer-scale integration of two-dimensional semiconductors","authors":"Xinyu Wang ,&nbsp;Die Wang ,&nbsp;Yuchen Tian ,&nbsp;Jing Guo ,&nbsp;Jinshui Miao ,&nbsp;Weida Hu ,&nbsp;Hailu Wang ,&nbsp;Kang Liu ,&nbsp;Lei Shao ,&nbsp;Saifei Gou ,&nbsp;Xiangqi Dong ,&nbsp;Hesheng Su ,&nbsp;Chuming Sheng ,&nbsp;Yuxuan Zhu ,&nbsp;Zhejia Zhang ,&nbsp;Jinshu Zhang ,&nbsp;Qicheng Sun ,&nbsp;Zihan Xu ,&nbsp;Peng Zhou ,&nbsp;Honglei Chen ,&nbsp;Wenzhong Bao","doi":"10.1016/j.chip.2024.100107","DOIUrl":"10.1016/j.chip.2024.100107","url":null,"abstract":"<div><div>Photodetectors (PDs) are crucial in modern society as they enable the detection of a diverse range of light-based signals. With the exponential increase in their development, materials are being used to create a wide range of PDs that play critical roles in enabling various applications and technologies. Image sensor technology has been hindered due to the lack of a universal system that can integrate all types of PDs with silicon-based readout integrated circuits (ROICs). To address this issue, we conducted experiments adopting two-dimensional materials as an example. High-performance MoS<sub>2</sub>-/MoTe<sub>2</sub>-based PDs were fabricated in the current work and the most suitable ROICs were identified to pair with them. This established a solid foundation for further researches in the field of image sensors. We developed and implemented a versatile testing system that uses a printed circuit board to connect the PD and ROIC. After the ROIC generates the sampled signal, it is collected and processed by algorithms, which overcome device uniformity limitations and produce a high-quality image that is visible to the naked eye. This universal system can be used with a wide range of PD and ROIC types made from different materials, making it highly convenient for diverse testing applications and the development of diverse image sensor types. This robust new platform is expected to spur further innovation and advancements in this rapidly developing field.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 4","pages":"Article 100107"},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Wang, Z. et al. Van der Waals ferroelectric transistors: the all-round artificial synapses for high-precision neuromorphic computing” Chip 2 (2023) 100044 范德华铁电晶体管:用于高精度神经形态计算的全方位人工突触 "的更正,Chip 2 (2023) 100044
Pub Date : 2024-07-01 DOI: 10.1016/j.chip.2024.100100
Zhongwang Wang, Xuefan Zhou, Xiaochi Liu, Aocheng Qiu, Caifang Gao, Yahua Yuan, Yumei Jing, Dou Zhang, Wenwu Li, Hang Luo, Junhao Chu, Jian Sun
{"title":"Corrigendum to “Wang, Z. et al. Van der Waals ferroelectric transistors: the all-round artificial synapses for high-precision neuromorphic computing” Chip 2 (2023) 100044","authors":"Zhongwang Wang, Xuefan Zhou, Xiaochi Liu, Aocheng Qiu, Caifang Gao, Yahua Yuan, Yumei Jing, Dou Zhang, Wenwu Li, Hang Luo, Junhao Chu, Jian Sun","doi":"10.1016/j.chip.2024.100100","DOIUrl":"https://doi.org/10.1016/j.chip.2024.100100","url":null,"abstract":"","PeriodicalId":100244,"journal":{"name":"Chip","volume":"9 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141700701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remote electric powering by germanium photovoltaic conversion of an Erbium-fiber laser beam 通过锗光电转换铒光纤激光束实现远程供电
Pub Date : 2024-06-26 DOI: 10.1016/j.chip.2024.100099
Richard Soref , Francesco De Leonardis , Oussama Moutanabbir , Gerard Daligou

The commercially available 4000-Watt continuous-wave (CW) Erbium-doped-fiber laser, emitting at the 1567-nm wavelength where the atmosphere has high transmission, provides an opportunity for harvesting electric power at remote “off the grid” locations using a multi-module photovoltaic (PV) “receiver” panel. This paper proposes a 32-element monocrystalline thick-layer Germanium PV panel for efficient harvesting of a collimated 1.13-m-diam beam. The 0.78-m2 PV panel is constructed from commercial Ge wafers. For incident CW laser-beam power in the 4000 to 10,000 W range, our thermal, electrical, and infrared simulations predict 660 to 1510 Watts of electrical output at the panel temperatures of 350 to 423 K.

商用 4000 瓦连续波掺铒光纤激光器的波长为 1567 纳米,在大气层中具有较高的透射率,这为在偏远的 "离网 "地点使用多模块光伏(PV)"接收器 "面板收集电力提供了机会。本文提出了一种 32 元单晶厚层锗光电板,用于高效采集 1.13 米直径的准直光束。0.78 米的光伏板由商用锗晶片制成。对于 4000-10,000 W 范围内的入射 CW 激光束,我们的热学、电学和红外模拟预测在面板温度为 350-423 K 时可输出 660-1510 W 的电力。
{"title":"Remote electric powering by germanium photovoltaic conversion of an Erbium-fiber laser beam","authors":"Richard Soref ,&nbsp;Francesco De Leonardis ,&nbsp;Oussama Moutanabbir ,&nbsp;Gerard Daligou","doi":"10.1016/j.chip.2024.100099","DOIUrl":"10.1016/j.chip.2024.100099","url":null,"abstract":"<div><p>The commercially available 4000-Watt continuous-wave (CW) Erbium-doped-fiber laser, emitting at the 1567-nm wavelength where the atmosphere has high transmission, provides an opportunity for harvesting electric power at remote “off the grid” locations using a multi-module photovoltaic (PV) “receiver” panel. This paper proposes a 32-element monocrystalline thick-layer Germanium PV panel for efficient harvesting of a collimated 1.13-m-diam beam. The 0.78-m<sup>2</sup> PV panel is constructed from commercial Ge wafers. For incident CW laser-beam power in the 4000 to 10,000 W range, our thermal, electrical, and infrared simulations predict 660 to 1510 Watts of electrical output at the panel temperatures of 350 to 423 K.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 3","pages":"Article 100099"},"PeriodicalIF":0.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000170/pdfft?md5=d0ba424633e8badf6dfa158686b16e97&pid=1-s2.0-S2709472324000170-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The on-chip thermoelectric cooler: advances, applications and challenges 片上热电冷却器:进展、应用和挑战
Pub Date : 2024-06-01 DOI: 10.1016/j.chip.2024.100096
Chengjun Li, Yubo Luo, Wang Li, Boyu Yang, Chengwei Sun, Wenyuan Ma, Zheng Ma, Yingchao Wei, Xin Li, Junyou Yang

With the development of 5G technology and increasing chip integration, traditional active cooling methods struggle to meet the growing thermal demands of chips. Thermoelectric coolers (TECs) have garnered great attention due to their rapid response, significant cooling differentials, strong compatibility, high stability and controllable device dimensions. In this review, starting from the fundamental principles of thermoelectric cooling and device design, high-performance thermoelectric cooling materials are summarized, and the progress of advanced on-chip TECs is comprehensively reviewed. Finally, the paper outlines the challenges and opportunities in TEC design, performance and applications, laying great emphasis on the critical role of thermoelectric cooling in addressing the evolving thermal management requirements in the era of emerging chip technologies.

随着 5G 技术的发展和芯片集成度的不断提高,传统的主动冷却方法难以满足芯片日益增长的热需求。热电半导体制冷片(TEC)因其响应速度快、制冷差大、兼容性强、稳定性高、器件尺寸可控等特点而备受关注。本综述从热电冷却和器件设计的基本原理出发,总结了高性能热电冷却材料,并全面回顾了先进片上 TEC 的进展。最后,本文概述了热电半导体制冷片设计、性能和应用方面的挑战与机遇,重点强调了热电半导体制冷片在满足新兴芯片技术时代不断发展的热管理要求方面的关键作用。
{"title":"The on-chip thermoelectric cooler: advances, applications and challenges","authors":"Chengjun Li,&nbsp;Yubo Luo,&nbsp;Wang Li,&nbsp;Boyu Yang,&nbsp;Chengwei Sun,&nbsp;Wenyuan Ma,&nbsp;Zheng Ma,&nbsp;Yingchao Wei,&nbsp;Xin Li,&nbsp;Junyou Yang","doi":"10.1016/j.chip.2024.100096","DOIUrl":"10.1016/j.chip.2024.100096","url":null,"abstract":"<div><p>With the development of 5G technology and increasing chip integration, traditional active cooling methods struggle to meet the growing thermal demands of chips. Thermoelectric coolers (TECs) have garnered great attention due to their rapid response, significant cooling differentials, strong compatibility, high stability and controllable device dimensions. In this review, starting from the fundamental principles of thermoelectric cooling and device design, high-performance thermoelectric cooling materials are summarized, and the progress of advanced on-chip TECs is comprehensively reviewed. Finally, the paper outlines the challenges and opportunities in TEC design, performance and applications, laying great emphasis on the critical role of thermoelectric cooling in addressing the evolving thermal management requirements in the era of emerging chip technologies.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"3 2","pages":"Article 100096"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472324000145/pdfft?md5=5df7bff3a72f84dd9ee90367220d271d&pid=1-s2.0-S2709472324000145-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140792827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chip
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1