{"title":"Unilateral RF sensors based on parallel-plate architecture for improved surface-scan MRI analysis of commercial pouch cells","authors":"Konstantin Romanenko , Nikolai Avdievich","doi":"10.1016/j.jmro.2023.100141","DOIUrl":null,"url":null,"abstract":"<div><p>Rapid expansion of the Li-ion pouch cell market is driven by the looming problem of permanent depletion of natural gas reservoirs and by the growing demand for high-performance portable devices and electric vehicles. Safety and performance of Li-ion cells have been two main focal points of the extensive battery research. Surface-scan Magnetic Resonance Imaging (MRI) is an operando method designed for the accurate detection of substandard battery cells and for monitoring electrochemical processes with high spatial and temporal resolutions. Intercalation-dependent magnetism and charge transfer processes in the cell's electrodes give rise to characteristic magnetic field patterns outside the cell. For accurate mapping of such patterns, we proposed the concept of a unilateral radio-frequency (RF) sensor, a flat thin resonator encapsulating a proton-rich solid-state detection medium. When the pouch cell is placed in direct contact with the sensor, the magnetic field patterns propagate inside the detection medium, and the corresponding spatial distribution of Larmor precession frequencies can be detected with MRI. In this work, we developed and evaluated a series of RF sensor configurations based on parallel-plate architecture enhanced by arrays of distributed capacitors. The parallel-plate approach does not suffer from RF interference with pouch cells and provides excellent sensitivity and <em>B</em><sub>1</sub>-field homogeneity. The optimal configuration of the parallel-plate sensor depends on the dimensions of the pouch cell and the distribution of parallel capacitors. This article includes the results of experimental tests, RF-field simulations, and strategies to further improve the surface-scan MRI method.</p></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"18 ","pages":"Article 100141"},"PeriodicalIF":2.6240,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666441023000493/pdfft?md5=f7329d64fedf9cf79efb3ba465098f1b&pid=1-s2.0-S2666441023000493-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441023000493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid expansion of the Li-ion pouch cell market is driven by the looming problem of permanent depletion of natural gas reservoirs and by the growing demand for high-performance portable devices and electric vehicles. Safety and performance of Li-ion cells have been two main focal points of the extensive battery research. Surface-scan Magnetic Resonance Imaging (MRI) is an operando method designed for the accurate detection of substandard battery cells and for monitoring electrochemical processes with high spatial and temporal resolutions. Intercalation-dependent magnetism and charge transfer processes in the cell's electrodes give rise to characteristic magnetic field patterns outside the cell. For accurate mapping of such patterns, we proposed the concept of a unilateral radio-frequency (RF) sensor, a flat thin resonator encapsulating a proton-rich solid-state detection medium. When the pouch cell is placed in direct contact with the sensor, the magnetic field patterns propagate inside the detection medium, and the corresponding spatial distribution of Larmor precession frequencies can be detected with MRI. In this work, we developed and evaluated a series of RF sensor configurations based on parallel-plate architecture enhanced by arrays of distributed capacitors. The parallel-plate approach does not suffer from RF interference with pouch cells and provides excellent sensitivity and B1-field homogeneity. The optimal configuration of the parallel-plate sensor depends on the dimensions of the pouch cell and the distribution of parallel capacitors. This article includes the results of experimental tests, RF-field simulations, and strategies to further improve the surface-scan MRI method.