{"title":"Exploring multi-stability in three-dimensional viscoelastic flow around a free stagnation point","authors":"Daniel W. Carlson , Amy Q. Shen , Simon J. Haward","doi":"10.1016/j.jnnfm.2023.105169","DOIUrl":null,"url":null,"abstract":"<div><p>Fluid elements passing near a stagnation point experience finite strain rates over long persistence times, and thus accumulate large strains. By the numerical optimization of a microfluidic 6-arm cross-slot geometry, recent works have harnessed this flow type as a tool for performing uniaxial and biaxial extensional rheometry (Haward et al., 2023 [5,6]). Here we use the microfluidic ‘Optimized-shape Uniaxial and Biaxial Extensional Rheometer’ (OUBER) geometry to probe an elastic flow instability which is sensitive to the alignment of the extensional flow. A three-dimensional symmetry-breaking instability occurring for flow of a dilute polymer solution in the OUBER geometry is studied experimentally by leveraging tomographic particle image velocimetry. Above a critical Weissenberg number, flow in uniaxial extension undergoes a supercritical pitchfork bifurcation to a multi-stable state. However, for biaxial extension (which is simply the kinematic inverse of uniaxial extension) the instability is strongly suppressed. In uniaxial extension, the multiple stable states align in an apparently random orientation as flow joining from four neighbouring inlet channels passes to one of the two opposing outlets; thus forming a mirrored asymmetry about the stagnation point. We relate the suppression of the instability in biaxial extension to the kinematic history of flow under the context of breaking the time-reversibility assumption.</p></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"323 ","pages":"Article 105169"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377025723001829/pdfft?md5=0a3ae7db571c664bda75ff21a15cf763&pid=1-s2.0-S0377025723001829-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025723001829","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fluid elements passing near a stagnation point experience finite strain rates over long persistence times, and thus accumulate large strains. By the numerical optimization of a microfluidic 6-arm cross-slot geometry, recent works have harnessed this flow type as a tool for performing uniaxial and biaxial extensional rheometry (Haward et al., 2023 [5,6]). Here we use the microfluidic ‘Optimized-shape Uniaxial and Biaxial Extensional Rheometer’ (OUBER) geometry to probe an elastic flow instability which is sensitive to the alignment of the extensional flow. A three-dimensional symmetry-breaking instability occurring for flow of a dilute polymer solution in the OUBER geometry is studied experimentally by leveraging tomographic particle image velocimetry. Above a critical Weissenberg number, flow in uniaxial extension undergoes a supercritical pitchfork bifurcation to a multi-stable state. However, for biaxial extension (which is simply the kinematic inverse of uniaxial extension) the instability is strongly suppressed. In uniaxial extension, the multiple stable states align in an apparently random orientation as flow joining from four neighbouring inlet channels passes to one of the two opposing outlets; thus forming a mirrored asymmetry about the stagnation point. We relate the suppression of the instability in biaxial extension to the kinematic history of flow under the context of breaking the time-reversibility assumption.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.