Yixuan Hou , Zhao Jin , Xinzhe Que , Yongchao Zhou , Yiping Zhang
{"title":"The influence of thixotropy on bubble growth in thixotropic yield stress fluids: Insights from numerical simulations","authors":"Yixuan Hou , Zhao Jin , Xinzhe Que , Yongchao Zhou , Yiping Zhang","doi":"10.1016/j.jnnfm.2024.105353","DOIUrl":null,"url":null,"abstract":"<div><div>Bubble behaviors in structured fluids are of great interests in industrial applications, while there is currently a lack of understanding regarding the effect of thixotropic microstructure on the bubble formation process. To this end, this study explores the influence of thixotropy on bubble growth in thixotropic yield stress fluids by numerical simulations using the Arbitrary Lagrangian-Eulerian (ALE) method. The numerical results reveal that, with the increase in the thixotropy number, the bubbles at detachment transform from inverted conical to spherical shapes at lower gas flow rates, and from spindle to conical shapes at higher gas flow rates, along with the decreased detachment volume and time. It is also found that the effect of gas flow rate varies with different thixotropy numbers. The flow field of the structured fluid reveals that the increases in gas flow rate primarily promote the structural destruction near the bubble tip, while the increase in thixotropy number facilitate the fluid flow around the bubble, with the significant reduction of the low-shear zones and expansion of the yielded zones near the equatorial plane. As a result, modulating the fluid flow with thixotropy number mainly influences the hydrodynamic pressure on the bubble. Based on a force balance model, the forces acting on the bubble are then calculated by integrating the stress on the interface, and it is found that thixotropy number controls the bubble detachment state with the drag effect. Accordingly, the mechanisms governing the influence of thixotropy on drag effect are discussed considering the flow field characteristics and the correlations of drag coefficients. This work helps to deepen the understanding of the bubble behaviors in structured fluids.</div></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"335 ","pages":"Article 105353"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724001691","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bubble behaviors in structured fluids are of great interests in industrial applications, while there is currently a lack of understanding regarding the effect of thixotropic microstructure on the bubble formation process. To this end, this study explores the influence of thixotropy on bubble growth in thixotropic yield stress fluids by numerical simulations using the Arbitrary Lagrangian-Eulerian (ALE) method. The numerical results reveal that, with the increase in the thixotropy number, the bubbles at detachment transform from inverted conical to spherical shapes at lower gas flow rates, and from spindle to conical shapes at higher gas flow rates, along with the decreased detachment volume and time. It is also found that the effect of gas flow rate varies with different thixotropy numbers. The flow field of the structured fluid reveals that the increases in gas flow rate primarily promote the structural destruction near the bubble tip, while the increase in thixotropy number facilitate the fluid flow around the bubble, with the significant reduction of the low-shear zones and expansion of the yielded zones near the equatorial plane. As a result, modulating the fluid flow with thixotropy number mainly influences the hydrodynamic pressure on the bubble. Based on a force balance model, the forces acting on the bubble are then calculated by integrating the stress on the interface, and it is found that thixotropy number controls the bubble detachment state with the drag effect. Accordingly, the mechanisms governing the influence of thixotropy on drag effect are discussed considering the flow field characteristics and the correlations of drag coefficients. This work helps to deepen the understanding of the bubble behaviors in structured fluids.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.