Dae-Hee Lee, Haseong Kim, Bong-Hyun Sung, Byung Kwan Cho, Seung-Goo Lee
{"title":"Biofoundries: Bridging Automation and Biomanufacturing in Synthetic Biology","authors":"Dae-Hee Lee, Haseong Kim, Bong-Hyun Sung, Byung Kwan Cho, Seung-Goo Lee","doi":"10.1007/s12257-023-0226-x","DOIUrl":null,"url":null,"abstract":"<p>Biofoundries represent advanced automation facilities pivotal for streamlining the Design-Build-Test-Learn (DBTL) paradigm in biomanufacturing and synthetic biology, suitable for both academic research and industrial applications. Nonetheless, establishing such a platform demands significant financial and temporal resources while maintaining a forward-looking perspective on automation, equipment compatibility, and operational efficiency. Despite its challenges, international collaborations between global biofoundries may offer solutions. The automated DBTL framework in biofoundries has transformed the production of bioproducts using engineered microbes. As the field advances, biofoundries are essential for streamlining and standardizing biotechnological processes, addressing efficiency, cost, and consistency challenges.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocess Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12257-023-0226-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biofoundries represent advanced automation facilities pivotal for streamlining the Design-Build-Test-Learn (DBTL) paradigm in biomanufacturing and synthetic biology, suitable for both academic research and industrial applications. Nonetheless, establishing such a platform demands significant financial and temporal resources while maintaining a forward-looking perspective on automation, equipment compatibility, and operational efficiency. Despite its challenges, international collaborations between global biofoundries may offer solutions. The automated DBTL framework in biofoundries has transformed the production of bioproducts using engineered microbes. As the field advances, biofoundries are essential for streamlining and standardizing biotechnological processes, addressing efficiency, cost, and consistency challenges.
期刊介绍:
Biotechnology and Bioprocess Engineering is an international bimonthly journal published by the Korean Society for Biotechnology and Bioengineering. BBE is devoted to the advancement in science and technology in the wide area of biotechnology, bioengineering, and (bio)medical engineering. This includes but is not limited to applied molecular and cell biology, engineered biocatalysis and biotransformation, metabolic engineering and systems biology, bioseparation and bioprocess engineering, cell culture technology, environmental and food biotechnology, pharmaceutics and biopharmaceutics, biomaterials engineering, nanobiotechnology, and biosensor and bioelectronics.