Sheng He, Yang Li, Li-Guang Wu, Rui-Ping Liu, Dong-Fa Guo, Zi-Ying Li, Xian-Hua Li
{"title":"A new working reference material for cassiterite oxygen isotope microanalysis","authors":"Sheng He, Yang Li, Li-Guang Wu, Rui-Ping Liu, Dong-Fa Guo, Zi-Ying Li, Xian-Hua Li","doi":"10.1002/sia.7279","DOIUrl":null,"url":null,"abstract":"Cassiterite is the principal ore mineral for tin, and its oxygen isotope is a promising proxy to trace the origin and evolution of ore-forming fluids, which requires precise and accurate oxygen isotopic analysis. Secondary ion mass spectrometry (SIMS) is a powerful tool for oxygen isotope analysis, especially when samples bear complicated textures, but matrix-matched reference materials are critical for accurate microanalysis. The only available matrix-matched reference material for cassiterite oxygen isotope analysis is Yongde-Cst, and more reference materials are required. Here, we report Piaotang-Cst as a potential working reference material for cassiterite oxygen isotope microanalysis. Our extensive SIMS microanalysis confirmed that Piaotang-Cst is relatively homogeneous, with an average two standard deviations (2SD) of 0.49‰ (<i>n</i> = 626). The δ<sup>18</sup>O<sub>VSMOW</sub> value of Piaotang-Cst is 5.33 ± 0.07‰ (2SD, <i>n</i> = 5) as determined by a conventional fluorination isotope ratio mass spectrometer. We also demonstrated that there is no measurable matrix effect caused by the variable contents of trace elements for cassiterite oxygen isotope microanalysis. We proposed that the Piaotang-Cst can be used as a working reference material for monitoring the external reproducibility and accuracy of SIMS analysis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7279","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cassiterite is the principal ore mineral for tin, and its oxygen isotope is a promising proxy to trace the origin and evolution of ore-forming fluids, which requires precise and accurate oxygen isotopic analysis. Secondary ion mass spectrometry (SIMS) is a powerful tool for oxygen isotope analysis, especially when samples bear complicated textures, but matrix-matched reference materials are critical for accurate microanalysis. The only available matrix-matched reference material for cassiterite oxygen isotope analysis is Yongde-Cst, and more reference materials are required. Here, we report Piaotang-Cst as a potential working reference material for cassiterite oxygen isotope microanalysis. Our extensive SIMS microanalysis confirmed that Piaotang-Cst is relatively homogeneous, with an average two standard deviations (2SD) of 0.49‰ (n = 626). The δ18OVSMOW value of Piaotang-Cst is 5.33 ± 0.07‰ (2SD, n = 5) as determined by a conventional fluorination isotope ratio mass spectrometer. We also demonstrated that there is no measurable matrix effect caused by the variable contents of trace elements for cassiterite oxygen isotope microanalysis. We proposed that the Piaotang-Cst can be used as a working reference material for monitoring the external reproducibility and accuracy of SIMS analysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.