Guiding the data collection for integrated Water-Energy-Food-Environment systems using a pilot smallholder farm in Costa Rica

IF 8 Q1 ENERGY & FUELS Energy nexus Pub Date : 2023-12-04 DOI:10.1016/j.nexus.2023.100259
Julian Fleischmann , Christian Birkel , Philipp Blechinger , Lars Ribbe , Alexandra Nauditt , Silvia Corigliano , Werner Platzer
{"title":"Guiding the data collection for integrated Water-Energy-Food-Environment systems using a pilot smallholder farm in Costa Rica","authors":"Julian Fleischmann ,&nbsp;Christian Birkel ,&nbsp;Philipp Blechinger ,&nbsp;Lars Ribbe ,&nbsp;Alexandra Nauditt ,&nbsp;Silvia Corigliano ,&nbsp;Werner Platzer","doi":"10.1016/j.nexus.2023.100259","DOIUrl":null,"url":null,"abstract":"<div><p>Smart integration of water, energy, agriculture, and environmental systems can create synergies, increase socio-economic benefits, and minimize environmental impact. However, effective planning of integrated water-energy-food-environment systems (iWEFEs) requires high resolution temporal and spatial data on various environmental and socioeconomic variables. Insufficient data availability and accessibility hampers the implementation of iWEFEs, particularly in remote areas of low- and middle-income countries. Addressing this gap, first, essential variables for the planning of iWEFEs are identified. Next, remote datasets are evaluated and selected regarding their suitability to serve for the planning of iWEFEs using a multi-criteria-analysis considering data accessibility, spatial coverage, spatial resolution, temporal resolution, and temporal coverage. Remote and in-situ data collection for the identified WEFE variables are implemented using a pilot case study of a smallholder farm in the data-scarce tropics of Costa Rica. The remote data collection is automated via APIs to open servers, data analysis and data visualization scripts, and complemented by an online survey. In-situ measurements are recommended to address data gaps in remote sensing, which are especially prevalent in the water domain. The research shall lay the foundation for free, open and automated data collection enabling the planning of iWEFEs worldwide.</p></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"13 ","pages":"Article 100259"},"PeriodicalIF":8.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277242712300089X/pdfft?md5=545b3ed31bf071af8df870a49cd7e73c&pid=1-s2.0-S277242712300089X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277242712300089X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Smart integration of water, energy, agriculture, and environmental systems can create synergies, increase socio-economic benefits, and minimize environmental impact. However, effective planning of integrated water-energy-food-environment systems (iWEFEs) requires high resolution temporal and spatial data on various environmental and socioeconomic variables. Insufficient data availability and accessibility hampers the implementation of iWEFEs, particularly in remote areas of low- and middle-income countries. Addressing this gap, first, essential variables for the planning of iWEFEs are identified. Next, remote datasets are evaluated and selected regarding their suitability to serve for the planning of iWEFEs using a multi-criteria-analysis considering data accessibility, spatial coverage, spatial resolution, temporal resolution, and temporal coverage. Remote and in-situ data collection for the identified WEFE variables are implemented using a pilot case study of a smallholder farm in the data-scarce tropics of Costa Rica. The remote data collection is automated via APIs to open servers, data analysis and data visualization scripts, and complemented by an online survey. In-situ measurements are recommended to address data gaps in remote sensing, which are especially prevalent in the water domain. The research shall lay the foundation for free, open and automated data collection enabling the planning of iWEFEs worldwide.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用哥斯达黎加的试点小农农场指导水-能源-粮食-环境综合系统的数据收集工作
巧妙地整合水、能源、农业和环境系统可以产生协同效应,提高社会经济效益,并最大限度地减少对环境的影响。然而,水-能源-粮食-环境综合系统(iWEFEs)的有效规划需要有关各种环境和社会经济变量的高分辨率时空数据。数据的可用性和可获取性不足阻碍了水-能源-粮食-环境综合系统的实施,尤其是在中低收入国家的偏远地区。针对这一差距,首先确定了 iWEFEs 规划的基本变量。其次,采用多标准分析法,考虑数据的可获取性、空间覆盖率、空间分辨率、时间分辨率和时间覆盖率,评估和选择适合 iWEFE 规划的远程数据集。通过对哥斯达黎加热带地区数据稀缺的小农农场进行试点案例研究,对确定的 WEFE 变量进行远程和现场数据收集。远程数据收集通过开放服务器的应用程序接口、数据分析和数据可视化脚本实现自动化,并辅以在线调查。建议进行现场测量,以弥补遥感数据的不足,这在水领域尤为普遍。这项研究将为免费、开放和自动化的数据收集奠定基础,从而能够在全球范围内规划 iWEFE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
期刊最新文献
Production economics and carbon footprint of an integrated timber harvesting operation in the Northeastern US Optimal rule-based energy management and sizing of a grid-connected renewable energy microgrid with hybrid storage using Levy Flight Algorithm pH shift extraction technique for plant proteins: A promising technique for sustainable development Cost breakdown indicates that biochar production from microalgae in Central Europe requires innovative cultivation procedures “Chacco” clay from the Peruvian highlands as a potential adsorbent of heavy metals in water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1