Lars Bröcker, Tristan Winzer, Nickolas Steppan, Jan Benedikt, Claus-Peter Klages
{"title":"Plasma polymerization of allyltrimethylsilane with single-filament dielectric-barrier discharges—Evidence of cationic surface processes","authors":"Lars Bröcker, Tristan Winzer, Nickolas Steppan, Jan Benedikt, Claus-Peter Klages","doi":"10.1002/ppap.202300177","DOIUrl":null,"url":null,"abstract":"Atmospheric-pressure plasma-enhanced film deposition with single-filament dielectric-barrier discharges (DBDs) in argon was investigated using allyltrimethylsilane (ATMS) as a precursor. Nonionic deposition in the discharge zone is largely precluded by a rapid cross-flow of the source gas, containing between 50 and 2000 ppm of ATMS. The performed experimental studies show a surprisingly large deposited film mass per transferred elementary charge between 220 and 540 amu. Film growth experiments, mass-spectrometric studies, and kinetic considerations led to the conclusion that the deposition process is a cationic surface polymerization, initiated by ions produced in the DBD by energy transfer from long-lived excited Ar species and propagated by addition of ATMS monomer molecules.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"42 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202300177","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric-pressure plasma-enhanced film deposition with single-filament dielectric-barrier discharges (DBDs) in argon was investigated using allyltrimethylsilane (ATMS) as a precursor. Nonionic deposition in the discharge zone is largely precluded by a rapid cross-flow of the source gas, containing between 50 and 2000 ppm of ATMS. The performed experimental studies show a surprisingly large deposited film mass per transferred elementary charge between 220 and 540 amu. Film growth experiments, mass-spectrometric studies, and kinetic considerations led to the conclusion that the deposition process is a cationic surface polymerization, initiated by ions produced in the DBD by energy transfer from long-lived excited Ar species and propagated by addition of ATMS monomer molecules.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.