Odile R. Smits, Christoph E. Düllmann, Paul Indelicato, Witold Nazarewicz, Peter Schwerdtfeger
{"title":"The quest for superheavy elements and the limit of the periodic table","authors":"Odile R. Smits, Christoph E. Düllmann, Paul Indelicato, Witold Nazarewicz, Peter Schwerdtfeger","doi":"10.1038/s42254-023-00668-y","DOIUrl":null,"url":null,"abstract":"The borders of the periodic table of the elements and of the chart of nuclides are not set in stone. The desire to explore the properties of atoms and their nuclei in a regime of very large numbers of electrons, protons and neutrons has motivated new experimental facilities to create new elements and nuclides at the limits of atomic number and mass. But the small production rates and short lifetimes of superheavy nuclei and their atoms mean that ‘atom-at-a-time’ studies are the only experimental way to probe them. The physical and chemical data obtained so far, augmented by theoretical calculations, indicate significant deviations from extrapolations from lighter elements and isotopes. This situation raises the following question: how much further can one push the limits of the periodic table? In this Review, we describe the major challenges in the field of the superheavy elements and speculate about future directions. Advances in superheavy element studies providing insight into the nuclear and atomic structure and the chemical behaviour of these exotic short-lived systems will help push to the limit of the periodic table of elements and revise the concept of the island of stability.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 2","pages":"86-98"},"PeriodicalIF":44.8000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-023-00668-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The borders of the periodic table of the elements and of the chart of nuclides are not set in stone. The desire to explore the properties of atoms and their nuclei in a regime of very large numbers of electrons, protons and neutrons has motivated new experimental facilities to create new elements and nuclides at the limits of atomic number and mass. But the small production rates and short lifetimes of superheavy nuclei and their atoms mean that ‘atom-at-a-time’ studies are the only experimental way to probe them. The physical and chemical data obtained so far, augmented by theoretical calculations, indicate significant deviations from extrapolations from lighter elements and isotopes. This situation raises the following question: how much further can one push the limits of the periodic table? In this Review, we describe the major challenges in the field of the superheavy elements and speculate about future directions. Advances in superheavy element studies providing insight into the nuclear and atomic structure and the chemical behaviour of these exotic short-lived systems will help push to the limit of the periodic table of elements and revise the concept of the island of stability.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.