首页 > 最新文献

Nature Reviews Physics最新文献

英文 中文
2025 at Nature Reviews Physics Nature Reviews Physics, 2025
IF 39.5 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2025-12-02 DOI: 10.1038/s42254-025-00904-7
As we close our seventh volume, we reflect on some of the highlights of the year.
在我们结束第七卷时,我们回顾了今年的一些亮点。
{"title":"2025 at Nature Reviews Physics","authors":"","doi":"10.1038/s42254-025-00904-7","DOIUrl":"10.1038/s42254-025-00904-7","url":null,"abstract":"As we close our seventh volume, we reflect on some of the highlights of the year.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 12","pages":"671-671"},"PeriodicalIF":39.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42254-025-00904-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The sound of ionization 电离的声音
IF 39.5 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2025-11-19 DOI: 10.1038/s42254-025-00902-9
Nina Meinzer
A paper in Optica shows how sound can be used to determine properties of an optical pulse.
《光学》杂志上的一篇论文展示了如何利用声音来确定光脉冲的特性。
{"title":"The sound of ionization","authors":"Nina Meinzer","doi":"10.1038/s42254-025-00902-9","DOIUrl":"10.1038/s42254-025-00902-9","url":null,"abstract":"A paper in Optica shows how sound can be used to determine properties of an optical pulse.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 12","pages":"680-680"},"PeriodicalIF":39.5,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A changing of the guard for dark energy? 暗能量卫士的换岗?
IF 39.5 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2025-11-19 DOI: 10.1038/s42254-025-00905-6
May Chiao
{"title":"A changing of the guard for dark energy?","authors":"May Chiao","doi":"10.1038/s42254-025-00905-6","DOIUrl":"10.1038/s42254-025-00905-6","url":null,"abstract":"","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 12","pages":"681-681"},"PeriodicalIF":39.5,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ratchet effect helps explain how a carnivorous plant predates 棘轮效应有助于解释食肉植物是如何提前出现的
IF 39.5 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2025-11-18 DOI: 10.1038/s42254-025-00900-x
Zoe Budrikis
A paper in PNAS shows how ideas from the physics of active matter can help explain the workings of a rare carnivorous plant.
《美国国家科学院院刊》上的一篇论文展示了活性物质物理学的观点如何有助于解释一种罕见的食肉植物的工作原理。
{"title":"Ratchet effect helps explain how a carnivorous plant predates","authors":"Zoe Budrikis","doi":"10.1038/s42254-025-00900-x","DOIUrl":"10.1038/s42254-025-00900-x","url":null,"abstract":"A paper in PNAS shows how ideas from the physics of active matter can help explain the workings of a rare carnivorous plant.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 12","pages":"679-679"},"PeriodicalIF":39.5,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cooper pairs in a metallic state 库珀以金属态成对
IF 39.5 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2025-11-18 DOI: 10.1038/s42254-025-00899-1
Ankita Anirban
An article in Physical Review Letters reports evidence that Cooper pairs exist in an anomalous metallic state.
《物理评论快报》上的一篇文章报道了库珀对以异常金属态存在的证据。
{"title":"Cooper pairs in a metallic state","authors":"Ankita Anirban","doi":"10.1038/s42254-025-00899-1","DOIUrl":"10.1038/s42254-025-00899-1","url":null,"abstract":"An article in Physical Review Letters reports evidence that Cooper pairs exist in an anomalous metallic state.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 12","pages":"678-678"},"PeriodicalIF":39.5,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How quantum biosensing is transforming healthcare 量子生物传感如何改变医疗保健
IF 39.5 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2025-11-13 DOI: 10.1038/s42254-025-00890-w
Alessandra Lo Fiego, Felix Donaldson, Umesh Vivekananda, Mete Atatüre, John J. L. Morton, Molly M. Stevens
Although sensing is one of the more established quantum technologies, translating quantum science into real-world biomedical impact requires further effort to overcome technical hurdles as well as structural and societal challenges.
虽然传感是较成熟的量子技术之一,但将量子科学转化为现实世界的生物医学影响需要进一步努力,以克服技术障碍以及结构和社会挑战。
{"title":"How quantum biosensing is transforming healthcare","authors":"Alessandra Lo Fiego, Felix Donaldson, Umesh Vivekananda, Mete Atatüre, John J. L. Morton, Molly M. Stevens","doi":"10.1038/s42254-025-00890-w","DOIUrl":"10.1038/s42254-025-00890-w","url":null,"abstract":"Although sensing is one of the more established quantum technologies, translating quantum science into real-world biomedical impact requires further effort to overcome technical hurdles as well as structural and societal challenges.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 12","pages":"672-674"},"PeriodicalIF":39.5,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast physics with structured light 结构光的超快物理
IF 39.5 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2025-11-11 DOI: 10.1038/s42254-025-00887-5
Yiqi Fang, Zijian Lyu, Yunquan Liu
Laser-excited electron motions allow the investigation of fundamental physical phenomena with unprecedented resolution in time, space and energy. The first step in most interactions between light and matter is the ultrafast response of electrons to impinging light, in which the electron dynamics is sensitive to the signatures of the driving light. As light can be tailored to carry custom angular momentum by imprinting it with characteristic structures of intensity, polarization or phase, the resulting structured light offers new opportunities to tailor and control the optical response of materials, far beyond the ability of conventional linearly or circularly polarized light. In this Review, we discuss recent progress at the intersection of the structured light and ultrafast physics communities alongside the underlying physics. Beyond these interesting fundamental considerations, we highlight the broad applications of structured light for investigating and controlling the dynamics of bound and free electrons, as well as extreme ultraviolet radiation, including in strong-field ionization, high harmonic generation and free-electron optical modulation. Spatiotemporal structuring of optical fields offers opportunities to probe and control electron motions in light–matter interactions. This Review discusses the recent advances in both fundamental physics and practical applications in ultrafast physics that involve structured light.
激光激发的电子运动使得对基本物理现象的研究在时间、空间和能量上具有前所未有的分辨率。光与物质相互作用的第一步是电子对入射光的超快响应,其中电子动力学对驱动光的特征很敏感。由于光可以通过印上强度、偏振或相位的特征结构来定制,从而携带定制的角动量,由此产生的结构光为定制和控制材料的光学响应提供了新的机会,远远超出了传统的线性或圆偏振光的能力。在这篇综述中,我们讨论了最近在结构光和超快物理社区以及基础物理学交叉领域的进展。除了这些有趣的基本考虑之外,我们强调了结构光在研究和控制束缚电子和自由电子动力学以及极端紫外线辐射方面的广泛应用,包括强场电离,高谐波产生和自由电子光学调制。光场的时空结构为探测和控制光-物质相互作用中的电子运动提供了机会。本文综述了结构光在基础物理和超快物理中的实际应用方面的最新进展。
{"title":"Ultrafast physics with structured light","authors":"Yiqi Fang, Zijian Lyu, Yunquan Liu","doi":"10.1038/s42254-025-00887-5","DOIUrl":"10.1038/s42254-025-00887-5","url":null,"abstract":"Laser-excited electron motions allow the investigation of fundamental physical phenomena with unprecedented resolution in time, space and energy. The first step in most interactions between light and matter is the ultrafast response of electrons to impinging light, in which the electron dynamics is sensitive to the signatures of the driving light. As light can be tailored to carry custom angular momentum by imprinting it with characteristic structures of intensity, polarization or phase, the resulting structured light offers new opportunities to tailor and control the optical response of materials, far beyond the ability of conventional linearly or circularly polarized light. In this Review, we discuss recent progress at the intersection of the structured light and ultrafast physics communities alongside the underlying physics. Beyond these interesting fundamental considerations, we highlight the broad applications of structured light for investigating and controlling the dynamics of bound and free electrons, as well as extreme ultraviolet radiation, including in strong-field ionization, high harmonic generation and free-electron optical modulation. Spatiotemporal structuring of optical fields offers opportunities to probe and control electron motions in light–matter interactions. This Review discusses the recent advances in both fundamental physics and practical applications in ultrafast physics that involve structured light.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 12","pages":"713-727"},"PeriodicalIF":39.5,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding emergence in complex systems using abductive AI 利用溯因人工智能理解复杂系统中的涌现
IF 39.5 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2025-11-11 DOI: 10.1038/s42254-025-00895-5
Jingtao Ding, Yu Zheng, Fengli Xu, Carlo Vittorio Cannistraci, Xiaowen Dong, Paolo Santi, Guido Caldarelli, Yizhou Sun, Qi R. Wang, Boleslaw K. Szymanski, Carlo Ratti, Trey Ideker, Jianxi Gao, Yong Li, Deliang Chen
Traditional approaches in complexity science struggle to capture emergent phenomena, but abductive reasoning — now computationally feasible through artificial intelligence — offers a new pathway for discovery.
复杂性科学的传统方法难以捕捉突发现象,但溯因推理——现在通过人工智能计算可行——为发现提供了新的途径。
{"title":"Understanding emergence in complex systems using abductive AI","authors":"Jingtao Ding, Yu Zheng, Fengli Xu, Carlo Vittorio Cannistraci, Xiaowen Dong, Paolo Santi, Guido Caldarelli, Yizhou Sun, Qi R. Wang, Boleslaw K. Szymanski, Carlo Ratti, Trey Ideker, Jianxi Gao, Yong Li, Deliang Chen","doi":"10.1038/s42254-025-00895-5","DOIUrl":"10.1038/s42254-025-00895-5","url":null,"abstract":"Traditional approaches in complexity science struggle to capture emergent phenomena, but abductive reasoning — now computationally feasible through artificial intelligence — offers a new pathway for discovery.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 12","pages":"675-677"},"PeriodicalIF":39.5,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking i-process nucleosynthesis by bridging stellar and nuclear physics 通过连接恒星物理和核物理解开i过程核合成
IF 39.5 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2025-11-11 DOI: 10.1038/s42254-025-00885-7
Mathis Wiedeking, Stephane Goriely, Magne Guttormsen, Falk Herwig, Ann-Cecilie Larsen, Sean N. Liddick, Dennis Mücher, Andrea L. Richard, Sunniva Siem, Artemis Spyrou
The origin of chemical elements and their abundances across the cosmos remain one of the central questions in physics. The formation of elements heavier than iron is traditionally attributed to three main mechanisms: the slow and rapid neutron-capture processes (s and r processes) and the p process (mostly driven by photodisintegration reactions). However, certain astronomical observations reveal elemental abundance patterns inconsistent with these processes. These discrepancies prompted the introduction of the intermediate neutron-capture process (i process), which operates at neutron densities between the s and r processes, and which has emerged as a key area of research. Observations of elemental abundances of stars confirm that the i process does indeed take place. Identifying the required astrophysical conditions and contributions of the i process sensitively depend on neutron-capture reaction rates involving unstable atomic nuclei. Important advancements have been achieved through these new astronomical observations and cutting-edge experimental and analytical techniques in nuclear physics, in addition to models of nuclear physics and nucleosynthesis. State-of-the-art facilities and theoretical models are revolutionizing our ability to explore the i process and offer fresh perspectives on the nuclear behaviour under extreme stellar conditions. This Review underscores the synergy between groundbreaking astronomical and nuclear physics research, bridging nuclear physics and observational astrophysics, and advancing our understanding of i-process nucleosynthesis. Our understanding of how heavy elements form within stars is incomplete. This Review highlights the emerging role of the intermediate neutron-capture process (i process) — between the slow and rapid processes — backed by stellar observations in tandem with advances in nuclear physics experiments and modelling.
化学元素的起源及其在宇宙中的丰度仍然是物理学的核心问题之一。传统上认为,比铁重的元素的形成有三种主要机制:慢速和快速中子捕获过程(s和r过程)和p过程(主要由光分解反应驱动)。然而,某些天文观测揭示的元素丰度模式与这些过程不一致。这些差异促使引入中间中子捕获过程(i过程),它在s和r过程之间的中子密度下运行,并已成为一个关键的研究领域。对恒星元素丰度的观测证实了i过程确实发生了。确定所需的天体物理条件和i过程的贡献敏感地依赖于涉及不稳定原子核的中子捕获反应速率。除了核物理和核合成模型外,还通过这些新的天文观测和核物理领域的尖端实验和分析技术取得了重要进展。最先进的设备和理论模型正在彻底改变我们探索i过程的能力,并为极端恒星条件下的核行为提供新的视角。这篇综述强调了开创性的天文学和核物理学研究之间的协同作用,架起了核物理学和观测天体物理学的桥梁,并促进了我们对i过程核合成的理解。我们对恒星内部重元素如何形成的理解还不完整。这篇综述强调了中间中子捕获过程(i过程)的新作用——介于慢过程和快速过程之间——由恒星观测以及核物理实验和建模的进展支持。
{"title":"Unlocking i-process nucleosynthesis by bridging stellar and nuclear physics","authors":"Mathis Wiedeking, Stephane Goriely, Magne Guttormsen, Falk Herwig, Ann-Cecilie Larsen, Sean N. Liddick, Dennis Mücher, Andrea L. Richard, Sunniva Siem, Artemis Spyrou","doi":"10.1038/s42254-025-00885-7","DOIUrl":"10.1038/s42254-025-00885-7","url":null,"abstract":"The origin of chemical elements and their abundances across the cosmos remain one of the central questions in physics. The formation of elements heavier than iron is traditionally attributed to three main mechanisms: the slow and rapid neutron-capture processes (s and r processes) and the p process (mostly driven by photodisintegration reactions). However, certain astronomical observations reveal elemental abundance patterns inconsistent with these processes. These discrepancies prompted the introduction of the intermediate neutron-capture process (i process), which operates at neutron densities between the s and r processes, and which has emerged as a key area of research. Observations of elemental abundances of stars confirm that the i process does indeed take place. Identifying the required astrophysical conditions and contributions of the i process sensitively depend on neutron-capture reaction rates involving unstable atomic nuclei. Important advancements have been achieved through these new astronomical observations and cutting-edge experimental and analytical techniques in nuclear physics, in addition to models of nuclear physics and nucleosynthesis. State-of-the-art facilities and theoretical models are revolutionizing our ability to explore the i process and offer fresh perspectives on the nuclear behaviour under extreme stellar conditions. This Review underscores the synergy between groundbreaking astronomical and nuclear physics research, bridging nuclear physics and observational astrophysics, and advancing our understanding of i-process nucleosynthesis. Our understanding of how heavy elements form within stars is incomplete. This Review highlights the emerging role of the intermediate neutron-capture process (i process) — between the slow and rapid processes — backed by stellar observations in tandem with advances in nuclear physics experiments and modelling.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 12","pages":"696-712"},"PeriodicalIF":39.5,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ingredients for finding the origins of life 寻找生命起源的要素
IF 39.5 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2025-11-03 DOI: 10.1038/s42254-025-00892-8
May Chiao, Didier Queloz
To understand how life began on Earth billions of years ago, a global community must work collaboratively to study the emergence of the necessary molecular building blocks and how they evolved into complex life in different environments.
为了了解数十亿年前地球上的生命是如何开始的,一个全球社区必须合作研究必要的分子构建块的出现,以及它们如何在不同的环境中进化成复杂的生命。
{"title":"Ingredients for finding the origins of life","authors":"May Chiao, Didier Queloz","doi":"10.1038/s42254-025-00892-8","DOIUrl":"10.1038/s42254-025-00892-8","url":null,"abstract":"To understand how life began on Earth billions of years ago, a global community must work collaboratively to study the emergence of the necessary molecular building blocks and how they evolved into complex life in different environments.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 11","pages":"602-603"},"PeriodicalIF":39.5,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42254-025-00892-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145429596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Reviews Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1