Analysis of Aberration Effects on Flow Imaging and Quantification in Echocardiography

Stefano Fiorentini;Svein-Erik Måsøy;Jørgen Avdal
{"title":"Analysis of Aberration Effects on Flow Imaging and Quantification in Echocardiography","authors":"Stefano Fiorentini;Svein-Erik Måsøy;Jørgen Avdal","doi":"10.1109/OJUFFC.2023.3338570","DOIUrl":null,"url":null,"abstract":"In medical ultrasound, aberration is a phenomenon that causes distortion of the ultrasound wavefront as it travels through an inhomogeneous medium. Aberration has been investigated since the 1960s and is known as a major cause of image quality loss in several applications, such as abdominal, breast, transcranial, and cardiac imaging. In the attempt to improve image quality in the presence of aberration, research has focused on two fronts: to provide deeper understanding of the physics behind aberration, and to develop robust methods for aberration correction based on such knowledge. However, most of the work found in the literature is focused towards improving BMode image quality, whereas little attention is given to other modalities. The aim of this work is to investigate the effects of aberration on two established blood flow imaging and quantification modalities, Pulsed Wave (PW) Doppler and Color Flow. The study was carried out on phantom and in-vivo recordings, using acquisitions and aberration conditions commonly encountered in cardiac imaging. In this work, aberration was modeled as a near-field phase screen, allowing for easier design and manufacturing compared to more realistic models. The results indicate that, as in BMode imaging, aberration degrades signal-to-noise ratio and resolution. Moreover, the increased sample volume size can significantly affect mean velocity and variance estimates in Color Flow, especially in the presence of strong velocity gradients occurring laterally to the beam direction. Similar effects were observed in PW Doppler. The conclusion is that blood flow imaging and quantification modalities in cardiac applications can potentially benefit from the development of aberration correction methods.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"3 ","pages":"194-202"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10341282","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10341282/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In medical ultrasound, aberration is a phenomenon that causes distortion of the ultrasound wavefront as it travels through an inhomogeneous medium. Aberration has been investigated since the 1960s and is known as a major cause of image quality loss in several applications, such as abdominal, breast, transcranial, and cardiac imaging. In the attempt to improve image quality in the presence of aberration, research has focused on two fronts: to provide deeper understanding of the physics behind aberration, and to develop robust methods for aberration correction based on such knowledge. However, most of the work found in the literature is focused towards improving BMode image quality, whereas little attention is given to other modalities. The aim of this work is to investigate the effects of aberration on two established blood flow imaging and quantification modalities, Pulsed Wave (PW) Doppler and Color Flow. The study was carried out on phantom and in-vivo recordings, using acquisitions and aberration conditions commonly encountered in cardiac imaging. In this work, aberration was modeled as a near-field phase screen, allowing for easier design and manufacturing compared to more realistic models. The results indicate that, as in BMode imaging, aberration degrades signal-to-noise ratio and resolution. Moreover, the increased sample volume size can significantly affect mean velocity and variance estimates in Color Flow, especially in the presence of strong velocity gradients occurring laterally to the beam direction. Similar effects were observed in PW Doppler. The conclusion is that blood flow imaging and quantification modalities in cardiac applications can potentially benefit from the development of aberration correction methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析畸变对超声心动图血流成像和定量的影响
在医用超声波中,像差是指超声波通过不均匀介质时导致波面变形的一种现象。自 20 世纪 60 年代以来,人们一直在研究像差问题,众所周知,像差是导致腹部、乳腺、经颅和心脏成像等多种应用中图像质量下降的主要原因。为了提高像差情况下的图像质量,研究主要集中在两个方面:深入了解像差背后的物理学原理,以及根据这些知识开发可靠的像差校正方法。然而,文献中发现的大部分工作都集中在提高 BMode 图像质量上,而很少关注其他模式。这项工作旨在研究像差对脉冲波(PW)多普勒和彩色血流这两种成熟的血流成像和量化模式的影响。这项研究是利用心脏成像中常见的采集和像差条件,在模型和体内记录中进行的。在这项工作中,畸变被模拟为近场相位屏,与更逼真的模型相比,更易于设计和制造。结果表明,与 BMode 成像一样,像差会降低信噪比和分辨率。此外,增大的样本体积会显著影响彩色流的平均速度和方差估计值,尤其是在光束方向横向出现强速度梯度的情况下。PW 多普勒也有类似的影响。结论是,心脏应用中的血流成像和量化模式有可能从像差校正方法的开发中受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preliminary Demonstration of Pulse-Echo Imaging With a Long Monolithic Flexible CMUT Array The 3D Estimation of Mechanical Wave Velocities in the Heart: Methods and Insights Direct Digital Simultaneous Phase-Amplitude Noise and Allan Deviation Measurement System Rochelle Salt Revisited for Eco-Designed Ultrasonic Transducers 3-D Object Reconstruction From Outdoor Ultrasonic Image and Variation Autoencoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1