Patterns of Diversity of the S and M Loci in Tunisian Apricots (Prunus armeniaca L.): Identification of Pollen-Part Mutations Conferring Self-Compatibility

IF 1.6 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Plant Molecular Biology Reporter Pub Date : 2023-12-12 DOI:10.1007/s11105-023-01425-2
Ayda Boubakri, Hedia Bourguiba, Neila Trifi-Farah, Carlos Romero, Lamia Krichen
{"title":"Patterns of Diversity of the S and M Loci in Tunisian Apricots (Prunus armeniaca L.): Identification of Pollen-Part Mutations Conferring Self-Compatibility","authors":"Ayda Boubakri, Hedia Bourguiba, Neila Trifi-Farah, Carlos Romero, Lamia Krichen","doi":"10.1007/s11105-023-01425-2","DOIUrl":null,"url":null,"abstract":"<p>Self-(in)compatibility (SI) is a genetic barrier developed by flowering plants to prevent self-pollination and promote outcrossing. SI is one of the most important traits in stone fruit breeding and particularly in apricot. Indeed, researchers focused their interests on identifying and selecting self-(in)compatible apricot parents for breeding programs and cultivars for the installation of new plantations. In this context, SI was studied in a set of 65 Tunisian apricot accessions focusing on both <i>S</i> and <i>M</i> loci targeting the genes, <i>S</i>-<i>RNase</i>, <i>SFB</i>, and <i>ParMDO</i>, with different primer combinations. The amplification of the first and the second intron of the <i>S</i>-<i>RNase</i> gene allowed the identification of nine different <i>S</i> alleles. The <i>S</i><sub>7</sub> allele which is reported to be present only in Southern Europe and North Africa regions was the most frequent occurring in 24 genotypes. Moreover, self-pollination tests and amplification of the <i>SFB</i> and <i>ParMDO</i> gene insertions (<i>S</i><sub>C</sub> and <i>m</i> haplotypes) producing pollen-part mutations (PPMs) that confer self-compatibility (SC) allowed us to correlate the presence of these two independent PPMs with SC for the first time within Tunisian apricot germplasm. Overall, nine accessions were found to be self-compatible carrying at least one self-compatible haplotype. The distribution of <i>S</i> alleles in the analyzed accessions supported the introduction of apricot to North Africa from the Irano-Caucasian region. Moreover, the detection of the self-compatible <i>ParMDO m</i> haplotype in Kairouan accessions similar to Spanish cultivars confirmed gene flow between Western European and North African apricots. All these results may provide relevant information for apricot breeding and production.</p>","PeriodicalId":20215,"journal":{"name":"Plant Molecular Biology Reporter","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology Reporter","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11105-023-01425-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Self-(in)compatibility (SI) is a genetic barrier developed by flowering plants to prevent self-pollination and promote outcrossing. SI is one of the most important traits in stone fruit breeding and particularly in apricot. Indeed, researchers focused their interests on identifying and selecting self-(in)compatible apricot parents for breeding programs and cultivars for the installation of new plantations. In this context, SI was studied in a set of 65 Tunisian apricot accessions focusing on both S and M loci targeting the genes, S-RNase, SFB, and ParMDO, with different primer combinations. The amplification of the first and the second intron of the S-RNase gene allowed the identification of nine different S alleles. The S7 allele which is reported to be present only in Southern Europe and North Africa regions was the most frequent occurring in 24 genotypes. Moreover, self-pollination tests and amplification of the SFB and ParMDO gene insertions (SC and m haplotypes) producing pollen-part mutations (PPMs) that confer self-compatibility (SC) allowed us to correlate the presence of these two independent PPMs with SC for the first time within Tunisian apricot germplasm. Overall, nine accessions were found to be self-compatible carrying at least one self-compatible haplotype. The distribution of S alleles in the analyzed accessions supported the introduction of apricot to North Africa from the Irano-Caucasian region. Moreover, the detection of the self-compatible ParMDO m haplotype in Kairouan accessions similar to Spanish cultivars confirmed gene flow between Western European and North African apricots. All these results may provide relevant information for apricot breeding and production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
突尼斯杏(Prunus armeniaca L.)S 和 M 基因位点的多样性模式:鉴定花粉部分突变的自相容性
自交不亲和(SI)是开花植物为防止自花授粉和促进外交而形成的一种遗传屏障。自交不亲和是核果育种中最重要的性状之一,对杏树尤为重要。事实上,研究人员的兴趣集中在为育种计划和新种植园的栽培品种确定和选择自交(不)相容的杏亲本。在此背景下,研究人员利用不同的引物组合,对一组 65 个突尼斯杏品种的 SI 进行了研究,重点是针对 S-RNase、SFB 和 ParMDO 基因的 S 和 M 基因座。通过扩增 S-RNase 基因的第一个和第二个内含子,确定了 9 个不同的 S 等位基因。据报道,S7 等位基因只存在于南欧和北非地区,在 24 个基因型中出现频率最高。此外,通过自花授粉测试和扩增 SFB 和 ParMDO 基因插入(SC 和 m 单倍型)产生的花粉部分突变(PPM),我们首次在突尼斯杏种质中将这两种独立的 PPM 与 SC 联系起来。总的来说,我们发现有九个种质具有自相容性,至少携带一个自相容性单倍型。S 等位基因在所分析品种中的分布支持了杏从伊朗-高加索地区引入北非。此外,在凯鲁万的品种中发现了与西班牙栽培品种相似的自交型 ParMDO m 单倍型,这证实了西欧杏与北非杏之间的基因流动。所有这些结果都可为杏树育种和生产提供相关信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Molecular Biology Reporter
Plant Molecular Biology Reporter 生物-生化研究方法
CiteScore
4.20
自引率
0.00%
发文量
40
审稿时长
2.7 months
期刊介绍: The scope of the journal of Plant Molecular Biology Reporter has expanded to keep pace with new developments in molecular biology and the broad area of genomics. The journal now solicits papers covering myriad breakthrough technologies and discoveries in molecular biology, genomics, proteomics, metabolomics, and other ‘omics’, as well as bioinformatics.
期刊最新文献
Knockout of the Bread Wheat CER9/SUD1 Gene Using CRISPR/Cas Technology QTL Mapping and Candidate Gene Analysis for Wax Trait of Stem and Leaf in Durum Wheat (Triticum turgidum L. ssp. durum (Desf.)) Identification of Molecular Markers Associated with Genomic Regions Controlling Agronomic Traits in Bread Wheat Genotypes Under Different Moisture Conditions Transcriptomic Analyses of Akebiae Fructus and Identification of Genes Related to Triterpenoid Saponin Biosynthesis Approach of Genetic Diversity of Lippia alba (Mill) and Petiveria alliacea L.: Medicinal Plants of Colombia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1