Anti-fouling coatings for blood-contacting devices

Q1 Engineering Smart Materials in Medicine Pub Date : 2023-12-13 DOI:10.1016/j.smaim.2023.10.001
Shiyu Yao , Hui Yan , Shiyu Tian , Rifang Luo , Yuancong Zhao , Jin Wang
{"title":"Anti-fouling coatings for blood-contacting devices","authors":"Shiyu Yao ,&nbsp;Hui Yan ,&nbsp;Shiyu Tian ,&nbsp;Rifang Luo ,&nbsp;Yuancong Zhao ,&nbsp;Jin Wang","doi":"10.1016/j.smaim.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Blood-contacting medical devices, such as vascular stents, intravascular catheters, and artificial heart valves, frequently encounter complications in clinical practice, including thrombosis, inflammatory reactions, and infections. These challenges pose significant obstacles in the effective application of blood-contacting medical devices. Given that protein adhesion serves as the primary trigger for detrimental events upon contact with blood, this review focuses on various anti-fouling coating strategies aimed at inhibiting protein adsorption. Currently, surface modification of blood-contacting medical devices primarily involves the construction of active or passive anti-fouling coatings. This review explores the implementation of active and passive anti-fouling coating strategies utilizing chemistry, physics, and biotechnology. Examples of anti-fouling coatings discussed include hydrophilic polymer coatings, zwitterionic polymer coatings, superhydrophobic coatings, and composite coatings. Furthermore, we propose implementation approaches for these coatings to address inflammation and infection challenges associated with blood-contacting devices. The review concludes with a brief overview of current surface modification technologies employed in commercial anti-fouling coatings and offers insights into the future of anti-fouling coating technologies for blood-contacting material surfaces. These advancements are essential for the advancement of design, development, and application of blood-contacting materials.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590183423000431/pdfft?md5=8ad11314421acec30dc5d25ddd1674c8&pid=1-s2.0-S2590183423000431-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183423000431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Blood-contacting medical devices, such as vascular stents, intravascular catheters, and artificial heart valves, frequently encounter complications in clinical practice, including thrombosis, inflammatory reactions, and infections. These challenges pose significant obstacles in the effective application of blood-contacting medical devices. Given that protein adhesion serves as the primary trigger for detrimental events upon contact with blood, this review focuses on various anti-fouling coating strategies aimed at inhibiting protein adsorption. Currently, surface modification of blood-contacting medical devices primarily involves the construction of active or passive anti-fouling coatings. This review explores the implementation of active and passive anti-fouling coating strategies utilizing chemistry, physics, and biotechnology. Examples of anti-fouling coatings discussed include hydrophilic polymer coatings, zwitterionic polymer coatings, superhydrophobic coatings, and composite coatings. Furthermore, we propose implementation approaches for these coatings to address inflammation and infection challenges associated with blood-contacting devices. The review concludes with a brief overview of current surface modification technologies employed in commercial anti-fouling coatings and offers insights into the future of anti-fouling coating technologies for blood-contacting material surfaces. These advancements are essential for the advancement of design, development, and application of blood-contacting materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血液接触设备的防污涂层
血管支架、血管内导管和人工心脏瓣膜等与血液接触的医疗器械在临床实践中经常会遇到血栓形成、炎症反应和感染等并发症。这些挑战对血液接触医疗器械的有效应用构成了重大障碍。鉴于蛋白质吸附是导致与血液接触后发生有害事件的主要诱因,本综述将重点介绍旨在抑制蛋白质吸附的各种防污涂层策略。目前,血液接触医疗器械的表面改性主要涉及主动或被动防污涂层的构建。本综述将探讨如何利用化学、物理和生物技术实施主动和被动防污涂层策略。讨论的防污涂层实例包括亲水性聚合物涂层、齐聚亚铵盐聚合物涂层、超疏水性涂层和复合涂层。此外,我们还提出了这些涂层的实施方法,以解决与血液接触设备相关的炎症和感染难题。综述最后简要概述了目前商用防污涂层所采用的表面改性技术,并对血液接触材料表面防污涂层技术的未来发展提出了见解。这些进步对于推动血液接触材料的设计、开发和应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
期刊最新文献
Externally triggered drug delivery systems Advances of surface modification to alleviate oxidative stress-induced valve degeneration The state-of-the-art therapeutic paradigms against sepsis Magnesium-based bioceramic-enhanced composites fabricated via friction stir processing Mitochondrial targeted prodrug nanoparticles for chemo-photodynamic combinational tumour therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1