{"title":"Earthquake design loads for retaining walls","authors":"John Wood","doi":"10.5459/bnzsee.1618","DOIUrl":null,"url":null,"abstract":"Free-standing retaining walls are usually designed for earthquake loads assuming cohesionless backfill soil and using the Mononobe-Okabe method. This simple design approach has led to satisfactory performance and is supported by laboratory testing and analytical studies. For major wall structures there are a number of refinements to the method that should be considered. In the paper methods of assessing the influence on the earthquake loads of the flexibility of the wall, soil cohesion and ground water in the backfill are presented. Equations for predicting failure plane angles to allow a better assessment of the soil properties within the failure wedge are included. Procedures for estimating the outward displacement and the influence of passive resistance and wall geometry on the sliding resistance are discussed. Design charts are presented which allow the magnitude of these refinements to be rapidly assessed.","PeriodicalId":46396,"journal":{"name":"Bulletin of the New Zealand Society for Earthquake Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/bnzsee.1618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Free-standing retaining walls are usually designed for earthquake loads assuming cohesionless backfill soil and using the Mononobe-Okabe method. This simple design approach has led to satisfactory performance and is supported by laboratory testing and analytical studies. For major wall structures there are a number of refinements to the method that should be considered. In the paper methods of assessing the influence on the earthquake loads of the flexibility of the wall, soil cohesion and ground water in the backfill are presented. Equations for predicting failure plane angles to allow a better assessment of the soil properties within the failure wedge are included. Procedures for estimating the outward displacement and the influence of passive resistance and wall geometry on the sliding resistance are discussed. Design charts are presented which allow the magnitude of these refinements to be rapidly assessed.