On the Method of Transformations: Obtaining Solutions of Nonlinear Differential Equations by Means of the Solutions of Simpler Linear or Nonlinear Differential Equations
{"title":"On the Method of Transformations: Obtaining Solutions of Nonlinear Differential Equations by Means of the Solutions of Simpler Linear or Nonlinear Differential Equations","authors":"N. Vitanov","doi":"10.3390/axioms12121106","DOIUrl":null,"url":null,"abstract":"Transformations are much used to connect complicated nonlinear differential equations to simple equations with known exact solutions. Two examples of this are the Hopf–Cole transformation and the simple equations method. In this article, we follow an idea that is opposite to the idea of Hopf and Cole: we use transformations in order to transform simpler linear or nonlinear differential equations (with known solutions) to more complicated nonlinear differential equations. In such a way, we can obtain numerous exact solutions of nonlinear differential equations. We apply this methodology to the classical parabolic differential equation (the wave equation), to the classical hyperbolic differential equation (the heat equation), and to the classical elliptic differential equation (Laplace equation). In addition, we use the methodology to obtain exact solutions of nonlinear ordinary differential equations by means of the solutions of linear differential equations and by means of the solutions of the nonlinear differential equations of Bernoulli and Riccati. Finally, we demonstrate the capacity of the methodology to lead to exact solutions of nonlinear partial differential equations on the basis of known solutions of other nonlinear partial differential equations. As an example of this, we use the Korteweg–de Vries equation and its solutions. Traveling wave solutions of nonlinear differential equations are of special interest in this article. We demonstrate the existence of the following phenomena described by some of the obtained solutions: (i) occurrence of the solitary wave–solitary antiwave from the solution, which is zero at the initial moment (analogy of an occurrence of particle and antiparticle from the vacuum); (ii) splitting of a nonlinear solitary wave into two solitary waves (analogy of splitting of a particle into two particles); (iii) soliton behavior of some of the obtained waves; (iv) existence of solitons which move with the same velocity despite the different shape and amplitude of the solitons.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"84 12","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/axioms12121106","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Transformations are much used to connect complicated nonlinear differential equations to simple equations with known exact solutions. Two examples of this are the Hopf–Cole transformation and the simple equations method. In this article, we follow an idea that is opposite to the idea of Hopf and Cole: we use transformations in order to transform simpler linear or nonlinear differential equations (with known solutions) to more complicated nonlinear differential equations. In such a way, we can obtain numerous exact solutions of nonlinear differential equations. We apply this methodology to the classical parabolic differential equation (the wave equation), to the classical hyperbolic differential equation (the heat equation), and to the classical elliptic differential equation (Laplace equation). In addition, we use the methodology to obtain exact solutions of nonlinear ordinary differential equations by means of the solutions of linear differential equations and by means of the solutions of the nonlinear differential equations of Bernoulli and Riccati. Finally, we demonstrate the capacity of the methodology to lead to exact solutions of nonlinear partial differential equations on the basis of known solutions of other nonlinear partial differential equations. As an example of this, we use the Korteweg–de Vries equation and its solutions. Traveling wave solutions of nonlinear differential equations are of special interest in this article. We demonstrate the existence of the following phenomena described by some of the obtained solutions: (i) occurrence of the solitary wave–solitary antiwave from the solution, which is zero at the initial moment (analogy of an occurrence of particle and antiparticle from the vacuum); (ii) splitting of a nonlinear solitary wave into two solitary waves (analogy of splitting of a particle into two particles); (iii) soliton behavior of some of the obtained waves; (iv) existence of solitons which move with the same velocity despite the different shape and amplitude of the solitons.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.