Linsey Griffin, Minji Yu, Susan Sokolowski, Susan Arnold, William K. Durfee
{"title":"Innovation in Respirator Design, Research, & Protection: A model of predictive fit for occupational safety and health.","authors":"Linsey Griffin, Minji Yu, Susan Sokolowski, Susan Arnold, William K. Durfee","doi":"10.1177/21695067231192265","DOIUrl":null,"url":null,"abstract":"Improving the fit of a half-mask respirator can be achieved by developing a design, fit, and sizing strategy to fit the faces of the general population or a specific group such as race, age group, or occupation. The purpose of this study was to define respirator fit based on the body product relationship and to develop a new set of facial landmarks and measurements for half-mask respirator design. 3D scan data and quantitative fit factor scores from 47 healthcare workers and 9 researchers in healthcare-related fields were utilized to investigate the relationship of new anthropometry measurements to respirator fit. A mask fit association model was validated through logistic regression. The respirator fit prediction model incorporating highly correlated face measurements opens the possibility of developing a system for judging respirator fit success and failure based on face dimensions; it can be integrated with automated measuring technologies and machine learning.","PeriodicalId":20673,"journal":{"name":"Proceedings of the Human Factors and Ergonomics Society Annual Meeting","volume":"1 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Human Factors and Ergonomics Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/21695067231192265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Improving the fit of a half-mask respirator can be achieved by developing a design, fit, and sizing strategy to fit the faces of the general population or a specific group such as race, age group, or occupation. The purpose of this study was to define respirator fit based on the body product relationship and to develop a new set of facial landmarks and measurements for half-mask respirator design. 3D scan data and quantitative fit factor scores from 47 healthcare workers and 9 researchers in healthcare-related fields were utilized to investigate the relationship of new anthropometry measurements to respirator fit. A mask fit association model was validated through logistic regression. The respirator fit prediction model incorporating highly correlated face measurements opens the possibility of developing a system for judging respirator fit success and failure based on face dimensions; it can be integrated with automated measuring technologies and machine learning.