Evaluating the onset conditions of a thermoacoustic Stirling engine loaded with an audio loudspeaker

Shu-Han Hsu, Chuan-Heng Lai
{"title":"Evaluating the onset conditions of a thermoacoustic Stirling engine loaded with an audio loudspeaker","authors":"Shu-Han Hsu, Chuan-Heng Lai","doi":"10.3389/fther.2023.1241411","DOIUrl":null,"url":null,"abstract":"This paper aims to evaluate the onset conditions of a thermoacoustic Stirling engine loaded with a commercially available audio loudspeaker. The thermoacoustic engine converts supplied heat power into mechanical power in the form of sound, without any mechanical moving parts. The simplicity of the acoustical heat engine holds great promise for high reliability and low cost. By utilizing a readily available electromagnetic device, the engine can serve as a durable solution for practical applications. In this study, we assembled a commercially available moving-coil loudspeaker as a low-cost linear alternator for the thermoacoustic Stirling engine, enabling electric generation from supplied heat. We modeled the loudspeaker using linear control equations and experimentally calibrated its acoustic impedances to estimate the acoustic load. For the part of the thermoacoustic engine, we estimated its acoustic characteristics within the framework of the linear thermoacoustic theory. By solving the characteristic equation resulting from the engine loaded with the audio speaker, we estimated the operational point of self-sustained oscillations excited by the coupling of the loudspeaker and the thermoacoustic engine system. To validate the estimations, we tested a prototype of the combined system, comprising the loudspeaker and the thermoacoustic engine. The results highlight the necessity of precise calibration and accounting for complex geometries within the acoustic load for accurate theoretical estimations, especially when incorporating a commercially available loudspeaker into a thermoacoustic engine.","PeriodicalId":73110,"journal":{"name":"Frontiers in thermal engineering","volume":"13 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in thermal engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fther.2023.1241411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to evaluate the onset conditions of a thermoacoustic Stirling engine loaded with a commercially available audio loudspeaker. The thermoacoustic engine converts supplied heat power into mechanical power in the form of sound, without any mechanical moving parts. The simplicity of the acoustical heat engine holds great promise for high reliability and low cost. By utilizing a readily available electromagnetic device, the engine can serve as a durable solution for practical applications. In this study, we assembled a commercially available moving-coil loudspeaker as a low-cost linear alternator for the thermoacoustic Stirling engine, enabling electric generation from supplied heat. We modeled the loudspeaker using linear control equations and experimentally calibrated its acoustic impedances to estimate the acoustic load. For the part of the thermoacoustic engine, we estimated its acoustic characteristics within the framework of the linear thermoacoustic theory. By solving the characteristic equation resulting from the engine loaded with the audio speaker, we estimated the operational point of self-sustained oscillations excited by the coupling of the loudspeaker and the thermoacoustic engine system. To validate the estimations, we tested a prototype of the combined system, comprising the loudspeaker and the thermoacoustic engine. The results highlight the necessity of precise calibration and accounting for complex geometries within the acoustic load for accurate theoretical estimations, especially when incorporating a commercially available loudspeaker into a thermoacoustic engine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估装有音频扬声器的热声斯特林发动机的启动条件
本文旨在评估装有商用音频扬声器的热声斯特林发动机的起动条件。热声发动机将提供的热能以声音的形式转化为机械能,而不需要任何机械运动部件。声热机的简单性为高可靠性和低成本提供了很大的希望。通过利用一个现成的电磁装置,发动机可以作为一个持久的解决方案,为实际应用。在这项研究中,我们组装了一个市售的动圈扬声器,作为热声斯特林发动机的低成本线性交流发电机,使热能发电成为可能。我们使用线性控制方程对扬声器进行建模,并通过实验校准其声阻抗来估计声负载。对于热声发动机部分,我们在线性热声理论的框架内估计了其声学特性。通过求解装有扬声器的发动机的特性方程,估计了由扬声器和热声发动机系统耦合激发的自持续振荡的工作点。为了验证这些估计,我们测试了一个组合系统的原型,包括扬声器和热声发动机。研究结果强调了精确校准和计算声载荷内复杂几何形状的必要性,以便进行准确的理论估计,特别是在将市售扬声器集成到热声发动机中时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Home energy management strategy to schedule multiple types of loads and energy storage device with consideration of user comfort: a deep reinforcement learning based approach An effect of a snow cover on solar heating and melting of lake or sea ice Evaluating the onset conditions of a thermoacoustic Stirling engine loaded with an audio loudspeaker Integration of carbon capture in a pulp mill—effect of strategic development towards better biomass resource utilization Grand challenges in heat engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1