{"title":"Early diagnosis of citrus Huanglongbing by Raman spectroscopy and machine learning","authors":"L. Kong, Tianyuan Liu, Honglin Qiu, Xinna Yu, Xianda Wang, Zhiwei Huang, Mei-Ling Huang","doi":"10.1088/1612-202X/ad1097","DOIUrl":null,"url":null,"abstract":"Timely diagnosis of citrus Huanglongbing (HLB) is fundamental to suppressing disease spread and reducing economic losses. This paper explores the combination of Raman spectroscopy and machine learning for on-site, accurate and early diagnosis of citrus HLB. The tissue lesion characteristics of citrus leaves at different stages of HLB infection was explored by Raman spectroscopy, and a scientific spectral acquisition strategy was proposed. Combined with machine learning for feature extraction, modeling learning, and predictive analysis, the diagnostic accuracies of principal component analysis (PCA)-Partial least-square and PCA-support vector machine models for the prediction set were 94.07% and 95.56%, respectively. Compared with conventional random detection method, the detection strategy proposed in this paper shows higher accuracy, especially in early HLB diagnosis with significant advantages.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"24 8","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202X/ad1097","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Timely diagnosis of citrus Huanglongbing (HLB) is fundamental to suppressing disease spread and reducing economic losses. This paper explores the combination of Raman spectroscopy and machine learning for on-site, accurate and early diagnosis of citrus HLB. The tissue lesion characteristics of citrus leaves at different stages of HLB infection was explored by Raman spectroscopy, and a scientific spectral acquisition strategy was proposed. Combined with machine learning for feature extraction, modeling learning, and predictive analysis, the diagnostic accuracies of principal component analysis (PCA)-Partial least-square and PCA-support vector machine models for the prediction set were 94.07% and 95.56%, respectively. Compared with conventional random detection method, the detection strategy proposed in this paper shows higher accuracy, especially in early HLB diagnosis with significant advantages.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics