Ayoub Laarej, N. Lakouari, A. Karakhi, Hamid Ez-Zahraouy
{"title":"ANALYZING THE EFFECT OF FIXED AND MOVING BOTTLENECKS ON TRAFFIC FLOW AND CAR ACCIDENTS IN A TWO-LANE CELLULAR AUTOMATON MODEL","authors":"Ayoub Laarej, N. Lakouari, A. Karakhi, Hamid Ez-Zahraouy","doi":"10.5937/jaes0-45808","DOIUrl":null,"url":null,"abstract":"Traffic bottleneck is considered as one of the major causes of the disturbance in traffic flow. The understanding the dynamics between vehicles and bottlenecks is crucial for enhancing traffic flow and ensuring road safety. This research examines a two-lane traffic cellular automaton model to understand the effects of static (e.g., lane reductions) and dynamic (e.g., slow-moving vehicles) bottlenecks on traffic flow and road safety. We found that at low vehicle densities, slow vehicles gravitate towards the open lane, while faster vehicles switch lanes to overtake, returning to their original lane post-bottleneck. At high densities, traffic flow near static bottlenecks ceases, independent of bottleneck length. Safety analysis shows that extended static bottlenecks reduce rear-end collision risk due to fewer lane changes and increased vehicle stationarity. At maximum density, gridlock nullifies the chance of such collisions. Our findings provide actionable insights for traffic planning focused on bottleneck management to improve road safety.","PeriodicalId":35468,"journal":{"name":"Journal of Applied Engineering Science","volume":"45 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/jaes0-45808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Traffic bottleneck is considered as one of the major causes of the disturbance in traffic flow. The understanding the dynamics between vehicles and bottlenecks is crucial for enhancing traffic flow and ensuring road safety. This research examines a two-lane traffic cellular automaton model to understand the effects of static (e.g., lane reductions) and dynamic (e.g., slow-moving vehicles) bottlenecks on traffic flow and road safety. We found that at low vehicle densities, slow vehicles gravitate towards the open lane, while faster vehicles switch lanes to overtake, returning to their original lane post-bottleneck. At high densities, traffic flow near static bottlenecks ceases, independent of bottleneck length. Safety analysis shows that extended static bottlenecks reduce rear-end collision risk due to fewer lane changes and increased vehicle stationarity. At maximum density, gridlock nullifies the chance of such collisions. Our findings provide actionable insights for traffic planning focused on bottleneck management to improve road safety.
期刊介绍:
Since 2002 iipp build cooperation with its clients established on wealthy experience, interchangeable respect and trust and permanently arrangement with the purpose of successfully realization of projects recognizable according to good organization and high quality of provided favors. Working as unique team of highly motivated experts, Institute iipp provides to its customers the most high-quality solutions in domain of engineering consulting.