Gas heating by inductively coupled low-pressure chlorine process plasmas

D. Levko, V. Subramaniam, L. Raja
{"title":"Gas heating by inductively coupled low-pressure chlorine process plasmas","authors":"D. Levko, V. Subramaniam, L. Raja","doi":"10.1088/1361-6595/ad12dd","DOIUrl":null,"url":null,"abstract":"\n The mechanism of gas heating in low-pressure inductively coupled chlorine plasma is analyzed using a self-consistent two-dimensional axisymmetric fluid plasma model that is coupled with the compressible Navier-Stokes equations. For gas pressures of 10 and 20 mTorr and the discharge powers in the range 0.1 – 1.3 kW, the main reactions contributing to gas heating were the ion-ion recombination reactions and the quenching of electronically excited chlorine atoms. At the same time, the energy released by the electron impact dissociation reaction of molecular chlorine is negligible due to its high degree of dissociation within the plasma bulk. The comparison between the results of our simulations and the fitting equation proposed in the literature show qualitative agreement, although there is significant quantitative discrepancy.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad12dd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanism of gas heating in low-pressure inductively coupled chlorine plasma is analyzed using a self-consistent two-dimensional axisymmetric fluid plasma model that is coupled with the compressible Navier-Stokes equations. For gas pressures of 10 and 20 mTorr and the discharge powers in the range 0.1 – 1.3 kW, the main reactions contributing to gas heating were the ion-ion recombination reactions and the quenching of electronically excited chlorine atoms. At the same time, the energy released by the electron impact dissociation reaction of molecular chlorine is negligible due to its high degree of dissociation within the plasma bulk. The comparison between the results of our simulations and the fitting equation proposed in the literature show qualitative agreement, although there is significant quantitative discrepancy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过电感耦合低压氯工艺等离子体加热气体
采用自一致二维轴对称流体等离子体模型,结合可压缩Navier-Stokes方程,分析了低压电感耦合氯等离子体中气体加热的机理。当气体压力为10和20 mTorr,放电功率为0.1 ~ 1.3 kW时,导致气体加热的主要反应是离子-离子复合反应和电子激发氯原子的猝灭反应。同时,由于氯分子在等离子体体内的高度解离,其电子冲击解离反应所释放的能量可以忽略不计。我们的模拟结果与文献中提出的拟合方程之间的比较显示定性一致,尽管存在显着的定量差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ThunderBoltz: an open-source direct simulation Monte Carlo Boltzmann solver for plasma transport, chemical kinetics, and 0D modeling Kinetic investigation of discharge performance for Xe, Kr, and Ar in a miniature ion thruster using a fast converging PIC-MCC-DSMC model Ground experimental study of the electron density of plasma sheath reduced by pulsed discharge Breakdown modes of capacitively coupled plasma: I. Transitions from glow discharge to multipactor Breakdown modes of capacitively coupled plasma: II. Non-self-sustained discharges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1