Kinetic investigation of discharge performance for Xe, Kr, and Ar in a miniature ion thruster using a fast converging PIC-MCC-DSMC model

Zilin Huang, Yuan Hu, Jinyue Geng, Chao Yang and Quanhua Sun
{"title":"Kinetic investigation of discharge performance for Xe, Kr, and Ar in a miniature ion thruster using a fast converging PIC-MCC-DSMC model","authors":"Zilin Huang, Yuan Hu, Jinyue Geng, Chao Yang and Quanhua Sun","doi":"10.1088/1361-6595/ad75b2","DOIUrl":null,"url":null,"abstract":"The present work develops a full particle-based model that couples the particle-in-cell plus Monte Carlo collision (PIC-MCC) simulation for plasma dynamics and the direct simulation Monte Carlo (DSMC) method for neutral dynamics in a synergistic iterative manner. This new model overcomes the slow convergence issue in the conventional direct coupling approach caused by the disparity of the time scales between the plasma and neutral dynamics. This model is applied to simulate the behavior of xenon (Xe) and its potential alternatives, krypton (Kr) and argon (Ar), in the discharge chamber of a miniature direct current (DC) ion thruster. The results show that a stable discharge is difficult to achieve for Kr and Ar under the operating conditions optimal for Xe. While increasing the discharge voltage can effectively improve the stability of discharge for Kr and Ar, other common strategies such as changing the magnetic field strength, propellant flow rate, and cathode current are not successful. The propellant utilization efficiency and discharge efficiency are affected by both discharge voltage and propellant flow rate. A maximum utilization efficiency and an optimal discharge efficiency are observed for all three propellants, with the values decreasing in the order of Xe, Kr, and Ar. Moreover, the discharge voltage corresponding to the optimal efficiency is inversely proportional to the square root of the propellant mass, indicating that the ion diffusional loss to the wall, rather than the ionization energy, is the dominant factor affecting the discharge performance for alternative propellants in a miniature DC thruster.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad75b2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present work develops a full particle-based model that couples the particle-in-cell plus Monte Carlo collision (PIC-MCC) simulation for plasma dynamics and the direct simulation Monte Carlo (DSMC) method for neutral dynamics in a synergistic iterative manner. This new model overcomes the slow convergence issue in the conventional direct coupling approach caused by the disparity of the time scales between the plasma and neutral dynamics. This model is applied to simulate the behavior of xenon (Xe) and its potential alternatives, krypton (Kr) and argon (Ar), in the discharge chamber of a miniature direct current (DC) ion thruster. The results show that a stable discharge is difficult to achieve for Kr and Ar under the operating conditions optimal for Xe. While increasing the discharge voltage can effectively improve the stability of discharge for Kr and Ar, other common strategies such as changing the magnetic field strength, propellant flow rate, and cathode current are not successful. The propellant utilization efficiency and discharge efficiency are affected by both discharge voltage and propellant flow rate. A maximum utilization efficiency and an optimal discharge efficiency are observed for all three propellants, with the values decreasing in the order of Xe, Kr, and Ar. Moreover, the discharge voltage corresponding to the optimal efficiency is inversely proportional to the square root of the propellant mass, indicating that the ion diffusional loss to the wall, rather than the ionization energy, is the dominant factor affecting the discharge performance for alternative propellants in a miniature DC thruster.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用快速收敛 PIC-MCC-DSMC 模型对微型离子推进器中 Xe、Kr 和 Ar 的放电性能进行动力学研究
本研究建立了一个基于粒子的完整模型,以协同迭代的方式将等离子体动力学的粒子入胞加蒙特卡洛碰撞(PIC-MCC)模拟与中性动力学的直接模拟蒙特卡洛(DSMC)方法结合起来。这一新模型克服了传统直接耦合方法因等离子体和中性动力学的时间尺度不同而导致的收敛缓慢问题。该模型被用于模拟氙(Xe)及其潜在替代品氪(Kr)和氩(Ar)在微型直流(DC)离子推进器放电室中的行为。结果表明,在 Xe 的最佳工作条件下,Kr 和 Ar 很难实现稳定放电。虽然增加放电电压可以有效提高 Kr 和 Ar 的放电稳定性,但其他常用策略,如改变磁场强度、推进剂流速和阴极电流等,并不奏效。推进剂利用效率和放电效率受放电电压和推进剂流速的影响。对于所有三种推进剂,都能观察到最大利用效率和最佳放电效率,其值依次为 Xe、Kr 和 Ar。此外,与最佳效率相对应的放电电压与推进剂质量的平方根成反比,这表明在微型直流推进器中,影响替代推进剂放电性能的主要因素是离子向器壁的扩散损耗,而不是电离能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ThunderBoltz: an open-source direct simulation Monte Carlo Boltzmann solver for plasma transport, chemical kinetics, and 0D modeling Kinetic investigation of discharge performance for Xe, Kr, and Ar in a miniature ion thruster using a fast converging PIC-MCC-DSMC model Ground experimental study of the electron density of plasma sheath reduced by pulsed discharge Breakdown modes of capacitively coupled plasma: I. Transitions from glow discharge to multipactor Breakdown modes of capacitively coupled plasma: II. Non-self-sustained discharges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1