Manufacturing Method and Thermal Properties of Open-Cell Type Aluminum Foam by Replication Casting Process

Jong Min Kim, Tae Kyu Ha, Beom Suck Han, Young Jig Kim
{"title":"Manufacturing Method and Thermal Properties of Open-Cell Type Aluminum Foam by Replication Casting Process","authors":"Jong Min Kim, Tae Kyu Ha, Beom Suck Han, Young Jig Kim","doi":"10.4028/p-g8exke","DOIUrl":null,"url":null,"abstract":"Open-cell type aluminum foam possesses unique structural characteristics comprising numerous interconnected pores within. This intriguing structure facilitates the passage of fluids (gas or liquid) through the interior of the open-cell type aluminum foams, enabling easy transfer to the exterior. The objective of this study is to manufacture open-cell type aluminum foams with varying pore sizes using the replication casting process and to evaluate their thermal properties. The equipment designed for the production of open-cell type aluminum foams consists of a chamber and an inner container. The chamber is connected to a vacuum line and an Ar gas line, with the container positioned inside. The aluminum alloys utilized for the foams were A356 and ADC12, and Na2CO3 served as the space holder. As a result of manufacturing the foams, there was no significant difference of porosity with space holder size and alloy types, the porosity averaged around 62%. To investigate the thermal properties of open-cell type aluminum foams in relation to pore size and alloy types, temperature variations were measured during sample heating via the hot plate method. Consequently, it was confirmed that the thermal properties of the foams were influenced by the structural conditions and alloy types.","PeriodicalId":21754,"journal":{"name":"Solid State Phenomena","volume":"68 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-g8exke","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Open-cell type aluminum foam possesses unique structural characteristics comprising numerous interconnected pores within. This intriguing structure facilitates the passage of fluids (gas or liquid) through the interior of the open-cell type aluminum foams, enabling easy transfer to the exterior. The objective of this study is to manufacture open-cell type aluminum foams with varying pore sizes using the replication casting process and to evaluate their thermal properties. The equipment designed for the production of open-cell type aluminum foams consists of a chamber and an inner container. The chamber is connected to a vacuum line and an Ar gas line, with the container positioned inside. The aluminum alloys utilized for the foams were A356 and ADC12, and Na2CO3 served as the space holder. As a result of manufacturing the foams, there was no significant difference of porosity with space holder size and alloy types, the porosity averaged around 62%. To investigate the thermal properties of open-cell type aluminum foams in relation to pore size and alloy types, temperature variations were measured during sample heating via the hot plate method. Consequently, it was confirmed that the thermal properties of the foams were influenced by the structural conditions and alloy types.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用复制铸造工艺制造开孔型铝泡沫的方法和热性能
开孔型泡沫铝具有独特的结构特点,其中包括许多相互连接的孔。这种有趣的结构有利于流体(气体或液体)通过开孔型泡沫铝的内部,使其易于转移到外部。本研究的目的是利用复制铸造工艺制造具有不同孔径的开孔型泡沫铝,并评估其热性能。设计用于生产开孔型泡沫铝的设备由一个腔室和一个内容器组成。该腔室与真空管路和氩气管路相连,容器位于腔室内部。泡沫材料采用A356铝合金和ADC12铝合金,Na2CO3作为空间保持剂。由于泡沫的制造,孔隙率与空间支架尺寸和合金类型没有显著差异,平均孔隙率在62%左右。为了研究开孔型泡沫铝的热性能与孔径和合金类型的关系,通过热板法测量了样品加热过程中的温度变化。结果表明,泡沫材料的热性能受结构条件和合金类型的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Thermostamping Simulation of a Carbon Fiber-Reinforced PAEK Composite Stringer Effects of Sn on Corrosion Resistance of Rare-Earth-Free Mg-2Zn Alloy TiO2- Polyurethane Cocopol Blend Nanocomposites as an Anticorrosion Coating for Mild Steel Tribological Properties of Spark Plasma Sintered Ti48Al48Cr2Nb2 Alloy Investigation of the Mechanical Properties of Urethane Dimethacrylate (UDMA) Reinforced with Abaca Cellulose for Vat Photopolymerization (VP)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1