Fractal Features in Terrain Restoration of Jiuzhai Valley, a World Natural Heritage Site in China

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Fractal and Fractional Pub Date : 2023-12-05 DOI:10.3390/fractalfract7120863
Zan Zou, Yue Du, Huixing Song
{"title":"Fractal Features in Terrain Restoration of Jiuzhai Valley, a World Natural Heritage Site in China","authors":"Zan Zou, Yue Du, Huixing Song","doi":"10.3390/fractalfract7120863","DOIUrl":null,"url":null,"abstract":"Jiuzhai Valley, a World Natural Heritage Site, was significantly damaged by an earthquake in 2017. However, case studies on the restoration of World Natural Heritage sites are lacking. This study aimed to use the box-counting method to analyze fractal characteristics of the terrain in Shuzheng Valley. Research data were used to conduct artificial intervention restoration of the earthquake-damaged terrain. Our results showed that (i) the travertine terrain shows self-similarity at different scales. The fractal dimension was related to terrain complexity: the more complex the terrain, the higher the fractal-dimension value; (ii) a combined form of fractal generator elements at the same scale was related to terrain complexity—differences in the spatial combination of the fractal generator elements can be compared based on fractal dimension; and (iii) the newly restored dam terrain also showed fractal characteristics whose spatial combination form was similar to that of the surrounding terrain. The complexity of the terrain’s fractal element combination may be related to the influence of surrounding environmental factors and the different ecological functional requirements. This study provides basic data for the near natural restoration of the Sparkling Lake travertine terrain after an earthquake and proposes new concepts and strategies for restoring World Natural Heritage Site terrains.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"119 43","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7120863","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Jiuzhai Valley, a World Natural Heritage Site, was significantly damaged by an earthquake in 2017. However, case studies on the restoration of World Natural Heritage sites are lacking. This study aimed to use the box-counting method to analyze fractal characteristics of the terrain in Shuzheng Valley. Research data were used to conduct artificial intervention restoration of the earthquake-damaged terrain. Our results showed that (i) the travertine terrain shows self-similarity at different scales. The fractal dimension was related to terrain complexity: the more complex the terrain, the higher the fractal-dimension value; (ii) a combined form of fractal generator elements at the same scale was related to terrain complexity—differences in the spatial combination of the fractal generator elements can be compared based on fractal dimension; and (iii) the newly restored dam terrain also showed fractal characteristics whose spatial combination form was similar to that of the surrounding terrain. The complexity of the terrain’s fractal element combination may be related to the influence of surrounding environmental factors and the different ecological functional requirements. This study provides basic data for the near natural restoration of the Sparkling Lake travertine terrain after an earthquake and proposes new concepts and strategies for restoring World Natural Heritage Site terrains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国世界自然遗产九寨峡谷地形修复中的分形特征
九寨沟是世界自然遗产,在2017年的一场地震中遭到严重破坏。然而,关于世界自然遗产地恢复的案例研究还很缺乏。本研究旨在利用盒计数法分析树郑河谷地形的分形特征。利用研究数据对地震破坏地形进行人工干预恢复。结果表明:(1)石灰华地形在不同尺度上表现出自相似性。分形维数与地形复杂程度有关,地形越复杂,分形维数越高;(2)同一尺度上分形生成元的组合形式与地形复杂性有关,分形生成元的空间组合差异可通过分形维数进行比较;(3)新恢复的坝体地形也呈现分形特征,其空间组合形式与周围地形相似。地形分形元素组合的复杂性可能与周边环境因子的影响和不同的生态功能需求有关。本研究为波光湖石灰华地形的地震后近自然恢复提供了基础数据,并为世界自然遗产地形的恢复提供了新的思路和策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
期刊最新文献
On the Impacts of the Global Sea Level Dynamics Research on Application of Fractional Calculus Operator in Image Underlying Processing The Multiscale Principle in Nature (Principium luxuriæ): Linking Multiscale Thermodynamics to Living and Non-Living Complex Systems A Numerical Scheme and Application to the Fractional Integro-Differential Equation Using Fixed-Point Techniques Correction: Panchal et al. 3D FEM Simulation and Analysis of Fractal Electrode-Based FBAR Resonator for Tetrachloroethene (PCE) Gas Detection. Fractal Fract. 2022, 6, 491
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1