Breaks in Hall-Petch Relationship in Magnesium

Amanda P. Carvalho, R. Figueiredo
{"title":"Breaks in Hall-Petch Relationship in Magnesium","authors":"Amanda P. Carvalho, R. Figueiredo","doi":"10.4028/p-8qxhof","DOIUrl":null,"url":null,"abstract":"Magnesium and its alloys display a non-usual relationship between flow stress and grain size at room temperature. Breaks in the Hall-Petch relationship have been reported in the literature. Inverse Hall-Petch behavior in which flow stress reduces with grain size decreasing has also been reported in pure magnesium and magnesium alloys with ultrafine and nanocrystalline structures. The present overview discusses these effects in terms of controlling deformation mechanisms. The distinct strength observed in pure magnesium and magnesium alloys with ultrafine grained structure is also discussed. It is shown that experimental data for fine and ultrafine grained magnesium alloys agree with a model suggested recently based on the mechanism of grain boundary sliding. It is also exhibited that the stability of the grain structure might control the strength of ultrafine grained samples.","PeriodicalId":21754,"journal":{"name":"Solid State Phenomena","volume":"121 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-8qxhof","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium and its alloys display a non-usual relationship between flow stress and grain size at room temperature. Breaks in the Hall-Petch relationship have been reported in the literature. Inverse Hall-Petch behavior in which flow stress reduces with grain size decreasing has also been reported in pure magnesium and magnesium alloys with ultrafine and nanocrystalline structures. The present overview discusses these effects in terms of controlling deformation mechanisms. The distinct strength observed in pure magnesium and magnesium alloys with ultrafine grained structure is also discussed. It is shown that experimental data for fine and ultrafine grained magnesium alloys agree with a model suggested recently based on the mechanism of grain boundary sliding. It is also exhibited that the stability of the grain structure might control the strength of ultrafine grained samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镁中霍尔-萃取关系的断裂
在室温下,镁及其合金的流变应力与晶粒尺寸之间表现出不同寻常的关系。文献中已经报道了Hall-Petch关系的破裂。在具有超细和纳米晶结构的纯镁和镁合金中也发现了流动应力随晶粒尺寸减小而减小的逆Hall-Petch行为。本综述从控制变形机制的角度讨论了这些影响。还讨论了纯镁和超细晶镁合金的明显强度。结果表明,细晶和超细晶镁合金的实验数据与最近提出的基于晶界滑动机制的模型一致。晶粒结构的稳定性可能是控制超细晶试样强度的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Thermostamping Simulation of a Carbon Fiber-Reinforced PAEK Composite Stringer Effects of Sn on Corrosion Resistance of Rare-Earth-Free Mg-2Zn Alloy TiO2- Polyurethane Cocopol Blend Nanocomposites as an Anticorrosion Coating for Mild Steel Tribological Properties of Spark Plasma Sintered Ti48Al48Cr2Nb2 Alloy Investigation of the Mechanical Properties of Urethane Dimethacrylate (UDMA) Reinforced with Abaca Cellulose for Vat Photopolymerization (VP)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1