Predicting Date Production in Iraq Using Recurrent Neural Networks RNN

Hassan Muayad Ibrahim, W. Hamza, Mohammed Saad Abed
{"title":"Predicting Date Production in Iraq Using Recurrent Neural Networks RNN","authors":"Hassan Muayad Ibrahim, W. Hamza, Mohammed Saad Abed","doi":"10.55529/ijrise.41.22.30","DOIUrl":null,"url":null,"abstract":"Artificial intelligence methods play an important role in predicting future values of time series and thus help in setting economic and social development plans. The study aimed to predict the production of dates in Iraq using recurrent neural networks, based on the production of dates in Iraq for the period from 2002-2021. The appropriate prediction model was chosen based on the MSE, MAPE, and MAE error measures. Recurrent neural networks that used the TRAINBR training function and the Purlin function were adopted to predict the production of dates in Iraq, which gives the lowest error value for the MSE, MAPE, and MAE error measures.","PeriodicalId":263587,"journal":{"name":"International Journal of Research In Science & Engineering","volume":"114 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Research In Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55529/ijrise.41.22.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence methods play an important role in predicting future values of time series and thus help in setting economic and social development plans. The study aimed to predict the production of dates in Iraq using recurrent neural networks, based on the production of dates in Iraq for the period from 2002-2021. The appropriate prediction model was chosen based on the MSE, MAPE, and MAE error measures. Recurrent neural networks that used the TRAINBR training function and the Purlin function were adopted to predict the production of dates in Iraq, which gives the lowest error value for the MSE, MAPE, and MAE error measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用递归神经网络预测伊拉克的红枣产量 RNN
人工智能方法在预测时间序列的未来值,从而帮助制定经济和社会发展计划方面发挥着重要作用。该研究旨在基于2002年至2021年期间伊拉克的枣产量,使用循环神经网络预测伊拉克的枣产量。根据MSE、MAPE和MAE误差度量选择合适的预测模型。使用TRAINBR训练函数和Purlin函数的递归神经网络被用于预测伊拉克的日期产量,它为MSE, MAPE和MAE误差度量提供了最低的误差值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of Fake Currency Using Machine Learning Models Predicting Date Production in Iraq Using Recurrent Neural Networks RNN Next-Generation Railway Safety: Designing an Automatic Gate System with Voice-Activated Alarms AI Generated Music Comparison of Incremental Conductance and Perturb and Observe Techniques of Maximum Power Point Tracking for PV Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1