{"title":"PID-Based Longitudinal Control of Platooning Trucks","authors":"Aashish Shaju, Steve S. Southward, Mehdi Ahmadian","doi":"10.3390/machines11121069","DOIUrl":null,"url":null,"abstract":"This article focuses on the development and assessment of a PID-based computationally cost-efficient longitudinal control algorithm for platooning trucks. The study employs a linear controller with a nested architecture, wherein the inner loop regulates relative velocities while the outer loop governs inter-vehicle distances within platoon vehicles. The design of the proposed PID controller entails a comprehensive focus on system identification, particularly emphasizing actuation dynamics. The simulation framework used in this study has been established through the integration of TruckSim® and Simulink®, resulting in a co-simulation environment. Simulink® serves as the platform for control action implementation, while TruckSim® simulates the vehicle’s dynamic behavior, thereby closely replicating real world conditions. The significant effort in fine-tuning the PID controller is described in detail, including the system identification of the linearized longitudinal dynamic model of the truck. The implementation is followed by an extensive series of simulation tests, systematically evaluating the controller’s performance, stability, and robustness. The results verify the effectiveness of the proposed controller in various leading truck operational scenarios. Furthermore, the controller’s robustness to large fluctuations in road grade and payload weight, which is commonly experienced in commercial vehicles, is evaluated. The simulation results indicate the controller’s ability to compensate for changes in both road grade and payload. Additionally, an initial assessment of the controller’s efficiency is conducted by comparing the commanded control efforts (total torque on wheels) along with the total fuel consumed. This initial analysis suggests that the controller exhibits minimal aggressive tendencies.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"24 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11121069","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article focuses on the development and assessment of a PID-based computationally cost-efficient longitudinal control algorithm for platooning trucks. The study employs a linear controller with a nested architecture, wherein the inner loop regulates relative velocities while the outer loop governs inter-vehicle distances within platoon vehicles. The design of the proposed PID controller entails a comprehensive focus on system identification, particularly emphasizing actuation dynamics. The simulation framework used in this study has been established through the integration of TruckSim® and Simulink®, resulting in a co-simulation environment. Simulink® serves as the platform for control action implementation, while TruckSim® simulates the vehicle’s dynamic behavior, thereby closely replicating real world conditions. The significant effort in fine-tuning the PID controller is described in detail, including the system identification of the linearized longitudinal dynamic model of the truck. The implementation is followed by an extensive series of simulation tests, systematically evaluating the controller’s performance, stability, and robustness. The results verify the effectiveness of the proposed controller in various leading truck operational scenarios. Furthermore, the controller’s robustness to large fluctuations in road grade and payload weight, which is commonly experienced in commercial vehicles, is evaluated. The simulation results indicate the controller’s ability to compensate for changes in both road grade and payload. Additionally, an initial assessment of the controller’s efficiency is conducted by comparing the commanded control efforts (total torque on wheels) along with the total fuel consumed. This initial analysis suggests that the controller exhibits minimal aggressive tendencies.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.