Warped-Area Reparameterization of Differential Path Integrals

Peiyu Xu, S. Bangaru, Tzu-Mao Li, Shuang Zhao
{"title":"Warped-Area Reparameterization of Differential Path Integrals","authors":"Peiyu Xu, S. Bangaru, Tzu-Mao Li, Shuang Zhao","doi":"10.1145/3618330","DOIUrl":null,"url":null,"abstract":"Physics-based differentiable rendering is becoming increasingly crucial for tasks in inverse rendering and machine learning pipelines. To address discontinuities caused by geometric boundaries and occlusion, two classes of methods have been proposed: 1) the edge-sampling methods that directly sample light paths at the scene discontinuity boundaries, which require nontrivial data structures and precomputation to select the edges, and 2) the reparameterization methods that avoid discontinuity sampling but are currently limited to hemispherical integrals and unidirectional path tracing. We introduce a new mathematical formulation that enjoys the benefits of both classes of methods. Unlike previous reparameterization work that focused on hemispherical integral, we derive the reparameterization in the path space. As a result, to estimate derivatives using our formulation, we can apply advanced Monte Carlo rendering methods, such as bidirectional path tracing, while avoiding explicit sampling of discontinuity boundaries. We show differentiable rendering and inverse rendering results to demonstrate the effectiveness of our method.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"27 20","pages":"1 - 18"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Physics-based differentiable rendering is becoming increasingly crucial for tasks in inverse rendering and machine learning pipelines. To address discontinuities caused by geometric boundaries and occlusion, two classes of methods have been proposed: 1) the edge-sampling methods that directly sample light paths at the scene discontinuity boundaries, which require nontrivial data structures and precomputation to select the edges, and 2) the reparameterization methods that avoid discontinuity sampling but are currently limited to hemispherical integrals and unidirectional path tracing. We introduce a new mathematical formulation that enjoys the benefits of both classes of methods. Unlike previous reparameterization work that focused on hemispherical integral, we derive the reparameterization in the path space. As a result, to estimate derivatives using our formulation, we can apply advanced Monte Carlo rendering methods, such as bidirectional path tracing, while avoiding explicit sampling of discontinuity boundaries. We show differentiable rendering and inverse rendering results to demonstrate the effectiveness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微分路径积分的翘曲区域重参数化
基于物理的可微分渲染在逆渲染和机器学习管道任务中变得越来越重要。为了解决由几何边界和遮挡引起的不连续问题,提出了两类方法:1)直接在场景不连续边界处对光路进行采样的边缘采样方法,该方法需要非平凡的数据结构和预先计算来选择边缘;2)避免不连续采样的再参数化方法,但目前仅限于半球面积分和单向路径跟踪。我们引入了一个新的数学公式,它享有这两类方法的好处。与以往着重于半球积分的再参数化工作不同,我们推导了路径空间中的再参数化。因此,为了使用我们的公式估计导数,我们可以应用高级蒙特卡罗渲染方法,如双向路径跟踪,同时避免对不连续边界进行显式采样。我们给出了可微渲染和逆渲染的结果来证明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators An Implicit Neural Representation for the Image Stack: Depth, All in Focus, and High Dynamic Range Rectifying Strip Patterns From Skin to Skeleton: Towards Biomechanically Accurate 3D Digital Humans Warped-Area Reparameterization of Differential Path Integrals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1