Zheng Dong, Ke Xu, Yaoan Gao, Qilin Sun, Hujun Bao, Weiwei Xu, Rynson W. H. Lau
{"title":"SAILOR: Synergizing Radiance and Occupancy Fields for Live Human Performance Capture","authors":"Zheng Dong, Ke Xu, Yaoan Gao, Qilin Sun, Hujun Bao, Weiwei Xu, Rynson W. H. Lau","doi":"10.1145/3618370","DOIUrl":null,"url":null,"abstract":"Immersive user experiences in live VR/AR performances require a fast and accurate free-view rendering of the performers. Existing methods are mainly based on Pixel-aligned Implicit Functions (PIFu) or Neural Radiance Fields (NeRF). However, while PIFu-based methods usually fail to produce photorealistic view-dependent textures, NeRF-based methods typically lack local geometry accuracy and are computationally heavy (e.g., dense sampling of 3D points, additional fine-tuning, or pose estimation). In this work, we propose a novel generalizable method, named SAILOR, to create high-quality human free-view videos from very sparse RGBD live streams. To produce view-dependent textures while preserving locally accurate geometry, we integrate PIFu and NeRF such that they work synergistically by conditioning the PIFu on depth and then rendering view-dependent textures through NeRF. Specifically, we propose a novel network, named SRONet, for this hybrid representation. SRONet can handle unseen performers without fine-tuning. Besides, a neural blending-based ray interpolation approach, a tree-based voxel-denoising scheme, and a parallel computing pipeline are incorporated to reconstruct and render live free-view videos at 10 fps on average. To evaluate the rendering performance, we construct a real-captured RGBD benchmark from 40 performers. Experimental results show that SAILOR outperforms existing human reconstruction and performance capture methods.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"12 13","pages":"1 - 15"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Immersive user experiences in live VR/AR performances require a fast and accurate free-view rendering of the performers. Existing methods are mainly based on Pixel-aligned Implicit Functions (PIFu) or Neural Radiance Fields (NeRF). However, while PIFu-based methods usually fail to produce photorealistic view-dependent textures, NeRF-based methods typically lack local geometry accuracy and are computationally heavy (e.g., dense sampling of 3D points, additional fine-tuning, or pose estimation). In this work, we propose a novel generalizable method, named SAILOR, to create high-quality human free-view videos from very sparse RGBD live streams. To produce view-dependent textures while preserving locally accurate geometry, we integrate PIFu and NeRF such that they work synergistically by conditioning the PIFu on depth and then rendering view-dependent textures through NeRF. Specifically, we propose a novel network, named SRONet, for this hybrid representation. SRONet can handle unseen performers without fine-tuning. Besides, a neural blending-based ray interpolation approach, a tree-based voxel-denoising scheme, and a parallel computing pipeline are incorporated to reconstruct and render live free-view videos at 10 fps on average. To evaluate the rendering performance, we construct a real-captured RGBD benchmark from 40 performers. Experimental results show that SAILOR outperforms existing human reconstruction and performance capture methods.