Effect of plant height on control of multiple herbicide-resistant Palmer amaranth (Amaranthus palmeri) in glufosinate/glyphosate-resistant corn

IF 3.5 Q1 AGRONOMY Frontiers in Agronomy Pub Date : 2023-12-04 DOI:10.3389/fagro.2023.1293293
Ramandeep Kaur, P. Chahal, Yeyin Shi, Nevin C. Lawrence, S. Knezevic, A. Jhala
{"title":"Effect of plant height on control of multiple herbicide-resistant Palmer amaranth (Amaranthus palmeri) in glufosinate/glyphosate-resistant corn","authors":"Ramandeep Kaur, P. Chahal, Yeyin Shi, Nevin C. Lawrence, S. Knezevic, A. Jhala","doi":"10.3389/fagro.2023.1293293","DOIUrl":null,"url":null,"abstract":"Multiple herbicide-resistant (MHR) Palmer amaranth is a troublesome weed in several crops across the USA, including corn. Due to unavoidable weather conditions, it is sometimes not possible for growers to apply pre-emergence herbicide; therefore, post-emergence (POST) herbicide is needed for effective control of MHR Palmer amaranth. The objectives of this study were to evaluate the effect of POST herbicides applied at two heights (10-15 cm and 20-30 cm) for MHR Palmer amaranth control and their effect on Palmer amaranth biomass, density, and seed production as well as yield of glufosinate/glyphosate-resistant corn. Field experiments were conducted at a grower’s field near Carleton, Nebraska, USA in 2020 and 2021. Control of MHR Palmer amaranth was affected by the plant height when herbicides were applied. Glufosinate, dicamba, dicamba/diflufenzopyr, and dicamba/tembotrione applied to 10-15 cm tall Palmer amaranth provided ≥ 94% control 30 d after EPOST (DAEPOST), whereas atrazine/bicyclopyone/mesotrione/S-metolachlor applied to 20-30 cm tall MHR Palmer amaranth provided 85% control in 2021. Glufosinate provided 85% to 90% control when applied to 20-30 cm tall Palmer amaranth in both years. At 90 DALPOST, dicamba, dicamba/diflufenzopyr, and dicamba/tembotrione applied to 10-15 cm tall Palmer amaranth provided ≥ 88% control. Dicamba/tembotrione, atrazine/bicyclopyone/mesotrione/S–metolachlor, and dicamba applied to 20-30 cm tall Palmer amaranth provided 85% to 92% control. Glufosinate, dicamba, and atrazine/bicyclopyone/mesotrione/S–metolachlor were the most effective for reducing Palmer amaranth density 2 to 19 plants m−2 when applied to 10-15 cm Palmer amaranth 30 DAEPOST compared with the nontreated control (137 plants m−2) in 2021; however, when applied to 20-30 cm Palmer amaranth, glufosinate, and atrazine/bicyclopyone/mesotrione/S–metolachlor reduced density 5 to 19 plants m−2. At 30 DAEPOST, glufosinate and atrazine/bicyclopyone/mesotrione/S–metolachlor had the lowest Palmer amaranth biomass (3-17 g m−2). Corn yield in 2020 was higher than 2021 due to more rain in 2020. All herbicides resulted in a similar yield in 2020. Lower seed production of 6,269 and 1,953 seeds plant-1 for 10-15 cm and 20-30 cm MHR Palmer amaranth were recorded with dicamba and atrazine/bicyclopyone/mesotrione/S–metolachlor.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":"1 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Agronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fagro.2023.1293293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple herbicide-resistant (MHR) Palmer amaranth is a troublesome weed in several crops across the USA, including corn. Due to unavoidable weather conditions, it is sometimes not possible for growers to apply pre-emergence herbicide; therefore, post-emergence (POST) herbicide is needed for effective control of MHR Palmer amaranth. The objectives of this study were to evaluate the effect of POST herbicides applied at two heights (10-15 cm and 20-30 cm) for MHR Palmer amaranth control and their effect on Palmer amaranth biomass, density, and seed production as well as yield of glufosinate/glyphosate-resistant corn. Field experiments were conducted at a grower’s field near Carleton, Nebraska, USA in 2020 and 2021. Control of MHR Palmer amaranth was affected by the plant height when herbicides were applied. Glufosinate, dicamba, dicamba/diflufenzopyr, and dicamba/tembotrione applied to 10-15 cm tall Palmer amaranth provided ≥ 94% control 30 d after EPOST (DAEPOST), whereas atrazine/bicyclopyone/mesotrione/S-metolachlor applied to 20-30 cm tall MHR Palmer amaranth provided 85% control in 2021. Glufosinate provided 85% to 90% control when applied to 20-30 cm tall Palmer amaranth in both years. At 90 DALPOST, dicamba, dicamba/diflufenzopyr, and dicamba/tembotrione applied to 10-15 cm tall Palmer amaranth provided ≥ 88% control. Dicamba/tembotrione, atrazine/bicyclopyone/mesotrione/S–metolachlor, and dicamba applied to 20-30 cm tall Palmer amaranth provided 85% to 92% control. Glufosinate, dicamba, and atrazine/bicyclopyone/mesotrione/S–metolachlor were the most effective for reducing Palmer amaranth density 2 to 19 plants m−2 when applied to 10-15 cm Palmer amaranth 30 DAEPOST compared with the nontreated control (137 plants m−2) in 2021; however, when applied to 20-30 cm Palmer amaranth, glufosinate, and atrazine/bicyclopyone/mesotrione/S–metolachlor reduced density 5 to 19 plants m−2. At 30 DAEPOST, glufosinate and atrazine/bicyclopyone/mesotrione/S–metolachlor had the lowest Palmer amaranth biomass (3-17 g m−2). Corn yield in 2020 was higher than 2021 due to more rain in 2020. All herbicides resulted in a similar yield in 2020. Lower seed production of 6,269 and 1,953 seeds plant-1 for 10-15 cm and 20-30 cm MHR Palmer amaranth were recorded with dicamba and atrazine/bicyclopyone/mesotrione/S–metolachlor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植株高度对控制抗草铵膦/草甘膦玉米中多种抗除草剂的帕尔默苋(Amaranthus palmeri)的影响
多重抗除草剂(MHR)苋菜是美国几种作物的麻烦杂草,包括玉米。由于不可避免的天气条件,种植者有时不可能在苗期前施用除草剂;因此,为了有效防治高致病性苋属植物,需要使用苗期后除草剂。本研究的目的是评价两个高度(10-15 cm和20-30 cm)施用POST除草剂对MHR苋菜的控制效果,以及它们对苋菜生物量、密度、种子产量和抗草铵膦/草甘膦玉米产量的影响。田间试验于2020年和2021年在美国内布拉斯加州卡尔顿附近的一个种植者田间进行。施用除草剂时,植物高度对苋菜MHR的防治有影响。草甘膦、麦草畏、麦草畏/双氟唑吡喃和麦草畏/替吡酮在10-15厘米高的帕尔默苋菜经体外post (DAEPOST)后30天的控制率≥94%,而阿特拉嗪/双环吡酮/美索三酮/ s -甲草胺在20-30厘米高的MHR帕尔默苋菜在2021年的控制率为85%。草甘膦在20 ~ 30 cm高的苋菜上施用时,防治效果均为85% ~ 90%。在90 DALPOST时,将麦草畏、麦草畏/氟虫腈和麦草畏/腾溴酮施用于10-15 cm高的苋菜上,控制效果≥88%。麦草畏/天苯三酮、阿特拉津/双环吡酮/中苯三酮/ s -甲草胺和麦草畏分别施用于20-30 cm高的苋菜上,防治效果为85% ~ 92%。2021年,与未处理对照(137株m - 2)相比,施用于10-15 cm的帕尔默苋菜30 DAEPOST的草铵膦、麦草枯和阿特拉嗪/双环吡啶/中三酮/ s -甲草胺最有效地将帕尔默苋菜密度2降低至19株m - 2;然而,当施用于20-30 cm的帕尔默苋菜、草铵膦和阿特拉津/双环酮/中三酮/ s -甲草胺时,密度降低5至19株m - 2。在30 DAEPOST时,草甘膦和阿特拉津/双环酮/中三酮/ s -甲草胺的苋菜生物量最低(3-17 g m−2)。由于2020年降雨较多,2020年玉米产量高于2021年。所有除草剂在2020年的产量都差不多。在10-15 cm和20-30 cm的MHR苋菜中,麦草畏和阿特拉津/双环酮/中三酮/ s -异草胺的种子产量分别为6269粒和1953粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Agronomy
Frontiers in Agronomy Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
4.80
自引率
0.00%
发文量
123
审稿时长
13 weeks
期刊最新文献
Toxicological risk assessment of mechanical-chemical vs. chemical weed control techniques in sugar beet in Germany using SYNOPS-GIS Amplicon sequencing identified a putative pathogen, Macrophomina phaseolina, causing wilt in African eggplant (Solanum aethiopicum) grown in Tanzania and Uganda Effects of transplanting and AMF inoculation on the fruit yield of African eggplants (Solanum aethiopicum and Solanum anguivi) in Tanzania Using integrated weed management systems to manage herbicide-resistant weeds in the Canadian Prairies Mulching as a weed management tool in container plant production - review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1