Authoring and Simulating Meandering Rivers

A. Paris, É. Guérin, Pauline Collon, E. Galin
{"title":"Authoring and Simulating Meandering Rivers","authors":"A. Paris, É. Guérin, Pauline Collon, E. Galin","doi":"10.1145/3618350","DOIUrl":null,"url":null,"abstract":"We present a method for interactively authoring and simulating meandering river networks. Starting from a terrain with an initial low-resolution network encoded as a directed graph, we simulate the evolution of the path of the different river channels using a physically-based migration equation augmented with control terms. The curvature-based terms in the equation allow us to reproduce phenomena identified in geomorphology, such as downstream migration of bends. Control terms account for the influence of the landscape topography and user-defined river trajectory constraints. Our model implements abrupt events that shape meandering networks, such as cutoffs forming oxbow lakes and avulsions. We visually show the effectiveness of our method and compare the generated networks quantitatively to river data by analyzing sinuosity and wavelength metrics. Our vector-based model runs at interactive rates, allowing for efficient authoring of large-scale meandering networks.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"20 16","pages":"1 - 14"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a method for interactively authoring and simulating meandering river networks. Starting from a terrain with an initial low-resolution network encoded as a directed graph, we simulate the evolution of the path of the different river channels using a physically-based migration equation augmented with control terms. The curvature-based terms in the equation allow us to reproduce phenomena identified in geomorphology, such as downstream migration of bends. Control terms account for the influence of the landscape topography and user-defined river trajectory constraints. Our model implements abrupt events that shape meandering networks, such as cutoffs forming oxbow lakes and avulsions. We visually show the effectiveness of our method and compare the generated networks quantitatively to river data by analyzing sinuosity and wavelength metrics. Our vector-based model runs at interactive rates, allowing for efficient authoring of large-scale meandering networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
编写和模拟蜿蜒的河流
提出了一种曲流河网的交互创作与模拟方法。从具有初始低分辨率网络编码为有向图的地形开始,我们使用带有控制项的基于物理的迁移方程来模拟不同河道路径的演变。方程中基于曲率的术语使我们能够重现地貌学中确定的现象,例如弯曲的下游迁移。控制项考虑了景观地形和用户定义的河流轨迹约束的影响。我们的模型实现了形成蜿蜒网络的突发事件,例如形成牛轭湖和撕裂的断裂带。我们直观地展示了我们方法的有效性,并通过分析弯曲度和波长度量来定量地将生成的网络与河流数据进行比较。我们基于矢量的模型以交互速率运行,允许高效地创作大规模蜿蜒的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators An Implicit Neural Representation for the Image Stack: Depth, All in Focus, and High Dynamic Range Rectifying Strip Patterns From Skin to Skeleton: Towards Biomechanically Accurate 3D Digital Humans Warped-Area Reparameterization of Differential Path Integrals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1