Donggyu Choi, Chang-eun Lee, Jaeuk Baek, Seungwon Do, Sungwoo Jun, Kwang-yong Kim, Young-guk Ha
{"title":"StairWave Transformer: For Fast Utilization of Recognition Function in Various Unmanned Vehicles","authors":"Donggyu Choi, Chang-eun Lee, Jaeuk Baek, Seungwon Do, Sungwoo Jun, Kwang-yong Kim, Young-guk Ha","doi":"10.3390/machines11121068","DOIUrl":null,"url":null,"abstract":"Newly introduced vehicles come with various added functions, each time utilizing data from different sensors. One prominent related function is autonomous driving, which is performed in cooperation with multiple sensors. These sensors mainly include image sensors, depth sensors, and infrared detection technology for nighttime use, and they mostly generate data based on image processing methods. In this paper, we propose a model that utilizes a parallel transformer design to gradually reduce the size of input data in a manner similar to a stairway, allowing for the effective use of such data and efficient learning. In contrast to the conventional DETR, this model demonstrates its capability to be trained effectively with smaller datasets and achieves rapid convergence. When it comes to classification, it notably diminishes computational demands, scaling down by approximately 6.75 times in comparison to ViT-Base, all the while maintaining an accuracy margin of within ±3%. Additionally, even in cases where sensor positions may exhibit slight misalignment due to variations in data input for object detection, it manages to yield consistent results, unfazed by the differences in the field of view taken into consideration. The proposed model is named Stairwave and is characterized by a parallel structure that retains a staircase-like form.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"29 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11121068","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Newly introduced vehicles come with various added functions, each time utilizing data from different sensors. One prominent related function is autonomous driving, which is performed in cooperation with multiple sensors. These sensors mainly include image sensors, depth sensors, and infrared detection technology for nighttime use, and they mostly generate data based on image processing methods. In this paper, we propose a model that utilizes a parallel transformer design to gradually reduce the size of input data in a manner similar to a stairway, allowing for the effective use of such data and efficient learning. In contrast to the conventional DETR, this model demonstrates its capability to be trained effectively with smaller datasets and achieves rapid convergence. When it comes to classification, it notably diminishes computational demands, scaling down by approximately 6.75 times in comparison to ViT-Base, all the while maintaining an accuracy margin of within ±3%. Additionally, even in cases where sensor positions may exhibit slight misalignment due to variations in data input for object detection, it manages to yield consistent results, unfazed by the differences in the field of view taken into consideration. The proposed model is named Stairwave and is characterized by a parallel structure that retains a staircase-like form.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.