{"title":"Adaptive Fuzzy Fault-Tolerant Control of Uncertain Fractional-Order Nonlinear Systems with Sensor and Actuator Faults","authors":"Ke Sun, Zhiyao Ma, Guowei Dong, Ping Gong","doi":"10.3390/fractalfract7120862","DOIUrl":null,"url":null,"abstract":"In this work, an adaptive fuzzy backstepping fault-tolerant control (FTC) issue is tackled for uncertain fractional-order (FO) nonlinear systems with sensor and actuator faults. A fuzzy logic system is exploited to manage unknown nonlinearity. In addition, a novel FO nonlinear filter-based dynamic surface control (DSC) method is constructed, effectively avoiding the inherent complexity explosion problem in the backstepping recursive process, and in the light of the construction of auxiliary functions, compensating the coupling term introduced by faults. On account of certain assumptions, the stability criterion of the FO Lyapunov function is applied to guarantee the stability of the closed-loop system. Finally, the simulation example verifies the validity of the presented control strategy.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"81 7","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract7120862","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, an adaptive fuzzy backstepping fault-tolerant control (FTC) issue is tackled for uncertain fractional-order (FO) nonlinear systems with sensor and actuator faults. A fuzzy logic system is exploited to manage unknown nonlinearity. In addition, a novel FO nonlinear filter-based dynamic surface control (DSC) method is constructed, effectively avoiding the inherent complexity explosion problem in the backstepping recursive process, and in the light of the construction of auxiliary functions, compensating the coupling term introduced by faults. On account of certain assumptions, the stability criterion of the FO Lyapunov function is applied to guarantee the stability of the closed-loop system. Finally, the simulation example verifies the validity of the presented control strategy.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.