Leonie Beek, Wilhelm Barthlott, M. Mail, K. Klopp, Thomas Gries
{"title":"Self-Driven Sustainable Oil Separation from Water Surfaces by Biomimetic Adsorbing and Transporting Materials","authors":"Leonie Beek, Wilhelm Barthlott, M. Mail, K. Klopp, Thomas Gries","doi":"10.3390/separations10120592","DOIUrl":null,"url":null,"abstract":"Oil films on water are an increasingly major contamination problem worldwide. In 2020, we published a novel adsorption and transportation technology for oil–water separation based on biological role models like the floating fern Salvinia. This application provides an unexpected ability for the fast and efficient removal of oil films, particularly in ecologically important freshwater biota. A single small Bionic Oil Adsorber (BOA) with 1 m2 functional textile can collect up to 4 L of oil per hour, which equals about 100 m2 of oil film from a water surface into a collecting vessel. This is a safe, fast, and sustainable solution for the ubiquitous contaminations of, e.g., fuel oil in freshwater environments. Here, we present updated, new experimental data, and a review of the literature published since.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"83 19","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations10120592","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oil films on water are an increasingly major contamination problem worldwide. In 2020, we published a novel adsorption and transportation technology for oil–water separation based on biological role models like the floating fern Salvinia. This application provides an unexpected ability for the fast and efficient removal of oil films, particularly in ecologically important freshwater biota. A single small Bionic Oil Adsorber (BOA) with 1 m2 functional textile can collect up to 4 L of oil per hour, which equals about 100 m2 of oil film from a water surface into a collecting vessel. This is a safe, fast, and sustainable solution for the ubiquitous contaminations of, e.g., fuel oil in freshwater environments. Here, we present updated, new experimental data, and a review of the literature published since.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization