SLANG.D: Fast, Modular and Differentiable Shader Programming

S. Bangaru, Lifan Wu, Tzu-Mao Li, Jacob Munkberg, Gilbert Bernstein, Jonathan Ragan-Kelley, Frédo Durand, Aaron Lefohn, Yong He
{"title":"SLANG.D: Fast, Modular and Differentiable Shader Programming","authors":"S. Bangaru, Lifan Wu, Tzu-Mao Li, Jacob Munkberg, Gilbert Bernstein, Jonathan Ragan-Kelley, Frédo Durand, Aaron Lefohn, Yong He","doi":"10.1145/3618353","DOIUrl":null,"url":null,"abstract":"We introduce SLANG.D, an extension to the Slang shading language that incorporates first-class automatic differentiation support. The new shading language allows us to transform a Direct3D-based path tracer to be fully differentiable with minor modifications to existing code. SLANG.D enables a shared ecosystem between machine learning frameworks and pre-existing graphics hardware API-based rendering systems, promoting the interchange of components and ideas across these two domains. Our contributions include a differentiable type system designed to ensure type safety and semantic clarity in codebases that blend differentiable and non-differentiable code, language primitives that automatically generate both forward and reverse gradient propagation methods, and a compiler architecture that generates efficient derivative propagation shader code for graphics pipelines. Our compiler supports differentiating code that involves arbitrary control-flow, dynamic dispatch, generics and higher-order differentiation, while providing developers flexible control of checkpointing and gradient aggregation strategies for best performance. Our system allows us to differentiate an existing real-time path tracer, Falcor, with minimal change to its shader code. We show that the compiler-generated derivative kernels perform as efficiently as handwritten ones. In several benchmarks, the SLANG.D code achieves significant speedup when compared to prior automatic differentiation systems.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"66 25","pages":"1 - 28"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce SLANG.D, an extension to the Slang shading language that incorporates first-class automatic differentiation support. The new shading language allows us to transform a Direct3D-based path tracer to be fully differentiable with minor modifications to existing code. SLANG.D enables a shared ecosystem between machine learning frameworks and pre-existing graphics hardware API-based rendering systems, promoting the interchange of components and ideas across these two domains. Our contributions include a differentiable type system designed to ensure type safety and semantic clarity in codebases that blend differentiable and non-differentiable code, language primitives that automatically generate both forward and reverse gradient propagation methods, and a compiler architecture that generates efficient derivative propagation shader code for graphics pipelines. Our compiler supports differentiating code that involves arbitrary control-flow, dynamic dispatch, generics and higher-order differentiation, while providing developers flexible control of checkpointing and gradient aggregation strategies for best performance. Our system allows us to differentiate an existing real-time path tracer, Falcor, with minimal change to its shader code. We show that the compiler-generated derivative kernels perform as efficiently as handwritten ones. In several benchmarks, the SLANG.D code achieves significant speedup when compared to prior automatic differentiation systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SLANG.D:快速、模块化和可微分着色器编程
我们介绍俚语。俚语着色语言的扩展,包含一流的自动区分支持。新的着色语言允许我们将基于direct3d的路径跟踪器转换为完全可区分的,只需对现有代码进行少量修改。俚语。D在机器学习框架和现有的基于图形硬件api的渲染系统之间建立了一个共享的生态系统,促进了这两个领域的组件和思想的交换。我们的贡献包括一个可微类型系统,旨在确保混合可微和不可微代码的代码库中的类型安全和语义清晰度,自动生成正向和反向梯度传播方法的语言原语,以及为图形管道生成高效衍生传播着色器代码的编译器体系结构。我们的编译器支持差异化代码,包括任意控制流、动态调度、泛型和高阶差异化,同时为开发人员提供灵活的检查点控制和梯度聚合策略,以获得最佳性能。我们的系统允许我们区分现有的实时路径跟踪器Falcor,对其着色器代码进行最小的更改。我们展示了编译器生成的衍生内核与手写内核一样有效。在几个基准测试中,俚语。与先前的自动微分系统相比,D代码实现了显著的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators An Implicit Neural Representation for the Image Stack: Depth, All in Focus, and High Dynamic Range Rectifying Strip Patterns From Skin to Skeleton: Towards Biomechanically Accurate 3D Digital Humans Warped-Area Reparameterization of Differential Path Integrals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1