hybrid model to improve reference evapotranspiration prediction: Integrating ANN and PSO

Hadeel Essa, S. Zubaidi
{"title":"hybrid model to improve reference evapotranspiration prediction: Integrating ANN and PSO","authors":"Hadeel Essa, S. Zubaidi","doi":"10.31185/ejuow.vol11.iss3.450","DOIUrl":null,"url":null,"abstract":"Reference evapotranspiration (ETo), one of the key elements of the hydrological cycle, is crucial for managing irrigation and drainage systems. In order to estimate monthly ETo, this study tested the prediction abilities of a unique hybrid methodology that coupled data pre-processing with a hybrid model composed of an artificial neural network (ANN) and particle swarm optimisation (PSO). In order to train and evaluate the model, monthly meteorological data were collected in Al-Kut City, Iraq, from 1990 to 2020. A range of statistical indicators were used to assess the model, including RMSE, NSE, and R2. The outcomes showed that the model, with a coefficient of determination of 0.93, is effective and has good simulation levels. \n  \n ","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"120 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/ejuow.vol11.iss3.450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reference evapotranspiration (ETo), one of the key elements of the hydrological cycle, is crucial for managing irrigation and drainage systems. In order to estimate monthly ETo, this study tested the prediction abilities of a unique hybrid methodology that coupled data pre-processing with a hybrid model composed of an artificial neural network (ANN) and particle swarm optimisation (PSO). In order to train and evaluate the model, monthly meteorological data were collected in Al-Kut City, Iraq, from 1990 to 2020. A range of statistical indicators were used to assess the model, including RMSE, NSE, and R2. The outcomes showed that the model, with a coefficient of determination of 0.93, is effective and has good simulation levels.    
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合模型来改进参考蒸散量预测:集成 ANN 和 PSO
参考蒸散发(ETo)是水文循环的关键要素之一,对灌溉和排水系统的管理至关重要。为了估计每月的ETo,本研究测试了一种独特的混合方法的预测能力,该方法将数据预处理与由人工神经网络(ANN)和粒子群优化(PSO)组成的混合模型相结合。为了对模型进行训练和评估,收集了1990 - 2020年伊拉克Al-Kut市的月度气象数据。采用一系列统计指标评估模型,包括RMSE、NSE和R2。结果表明,该模型的决定系数为0.93,是有效的,具有较好的模拟水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Dye Removal and Water Treatment Feasibility Assessment for Iraq's Industrial Sector: A Case Study on Terasil Blue Dye Treatment Using Inverse Fluidized Bed and Adsorption A Deep Learning Approach to Evaluating SISO-OFDM Channel Equalization Numerical Investigation of the Impact of Subcooling Inlet on Water Flow Boiling Heat Transfer Through a Microchannel Effect of Metal Foam’s Volume on the Performance of a Double Pipe heat exchanger Flow field and heat transfer characteristics in dimple pipe with different shape of dimples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1