{"title":"Hyperbolic Actions and 2nd Bounded Cohomology of Subgroups of 𝖮𝗎𝗍(𝖥_{𝗇})","authors":"M. Handel, L. Mosher","doi":"10.1090/memo/1454","DOIUrl":null,"url":null,"abstract":"<p>In this two part work we prove that for every finitely generated subgroup <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma greater-than sans-serif upper O sans-serif u sans-serif t left-parenthesis upper F Subscript n Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">O</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">u</mml:mi>\n <mml:mi mathvariant=\"sans-serif\">t</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>F</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma >{\\mathsf {Out}}(F_n)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, either <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is virtually abelian or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Subscript b Superscript 2 Baseline left-parenthesis normal upper Gamma semicolon double-struck upper R right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>H</mml:mi>\n <mml:mi>b</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msubsup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mo>;</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^2_b(\\Gamma ;{\\mathbb {R}})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> contains a vector space embedding of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l Superscript 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\ell ^1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The method uses actions on hyperbolic spaces. In Part I we focus on the case of infinite lamination subgroups <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>—those for which the set of all attracting laminations of all elements of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is an infinite set—using actions on free splitting complexes of free groups. In Part II we focus on finite lamination subgroups <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and on the construction of useful new hyperbolic actions of those subgroups.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
In this two part work we prove that for every finitely generated subgroup Γ>Out(Fn)\Gamma >{\mathsf {Out}}(F_n), either Γ\Gamma is virtually abelian or Hb2(Γ;R)H^2_b(\Gamma ;{\mathbb {R}}) contains a vector space embedding of ℓ1\ell ^1. The method uses actions on hyperbolic spaces. In Part I we focus on the case of infinite lamination subgroups Γ\Gamma—those for which the set of all attracting laminations of all elements of Γ\Gamma is an infinite set—using actions on free splitting complexes of free groups. In Part II we focus on finite lamination subgroups Γ\Gamma and on the construction of useful new hyperbolic actions of those subgroups.