Łukasz Rymaniak, Monika Mąka, Natalia Szymlet, Michalina Kamińska, A. Kęska
{"title":"Measurement of Exhaust Emissions from a Two-wheeler – an Experimental Validation of the Remote-Sensing Method","authors":"Łukasz Rymaniak, Monika Mąka, Natalia Szymlet, Michalina Kamińska, A. Kęska","doi":"10.12911/22998993/171900","DOIUrl":null,"url":null,"abstract":"The paper presents the problem of testing vehicles, which are some of the main sources of air pollution. The authors suggested the remote-sensing method as a tool for the measurement of the vehicle exhaust emissions and an on-going control thereof. This is an economical solution that allows measuring a large number of vehicles in a short time. The presented work aims at an experimental validation of the measurement method of exhaust emissions on the example of a two-wheeler. To that end, two parallel laboratory tests were carried out: measurement of the exhaust emissions obtained directly from the tailpipe using the PEMS (Portable Emission Measurement System) equipment and from the exhaust cloud, utilizing a module emission gate. A significant mutual correla - tion of the results confirms the efficiency of the method. The highest value of the coefficient of determination was obtained for the CO 2 , PM and NO analyzers. Different orders of values were primarily caused by the dissipation of the exhaust gas and the influence of the ambient conditions on the measurement process. Further works are therefore necessary to allow an assessment of the actual measurement uncertainty of the equipment irrespective of the fueling system and type of vehicles.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":" 1192","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/171900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
The paper presents the problem of testing vehicles, which are some of the main sources of air pollution. The authors suggested the remote-sensing method as a tool for the measurement of the vehicle exhaust emissions and an on-going control thereof. This is an economical solution that allows measuring a large number of vehicles in a short time. The presented work aims at an experimental validation of the measurement method of exhaust emissions on the example of a two-wheeler. To that end, two parallel laboratory tests were carried out: measurement of the exhaust emissions obtained directly from the tailpipe using the PEMS (Portable Emission Measurement System) equipment and from the exhaust cloud, utilizing a module emission gate. A significant mutual correla - tion of the results confirms the efficiency of the method. The highest value of the coefficient of determination was obtained for the CO 2 , PM and NO analyzers. Different orders of values were primarily caused by the dissipation of the exhaust gas and the influence of the ambient conditions on the measurement process. Further works are therefore necessary to allow an assessment of the actual measurement uncertainty of the equipment irrespective of the fueling system and type of vehicles.
期刊介绍:
- Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment