Y. Yuhandri, A. Windarto, Muhammad Noor Hasan Siregar
{"title":"Improving Brain Tumor Classification Efficacy through the Application of Feature Selection and Ensemble Classifiers","authors":"Y. Yuhandri, A. Windarto, Muhammad Noor Hasan Siregar","doi":"10.18178/joig.11.4.397-404","DOIUrl":null,"url":null,"abstract":"Accurate brain tumor detection is crucial due to its high mortality rate. However, existing automated methods suffer from limited accuracy and high false-positive rates. In this study, we aimed to improve brain tumor classification by comparing 17 different classifiers organized into six groups: Decision Tree (DT) Model, Support Vector Machine (SVM), Naive Bayes Classifier, Logistic Regression, Generalized Linear Model (GLM) Classifier, and Neural Network. We utilized a dataset of 3,762 Magnetic Resonance Imaging (MRI) scans of brain tumors from Kaggle, with each image having dimensions of 240 × 240 pixels and labeled as tumor or non-tumor. Our approach involved three main steps: extracting visual information using 17 predictor classes, optimizing feature extraction through weight optimization, and comparing different sets of classifier models. We evaluated the models’ performance using the confusion matrix and Receiver Operating Characteristics (ROC) curves. Our results showed that optimizing feature selection and utilizing ensemble classifiers improved the accuracy of brain tumor classification. The DT Model with ensemble classifiers emerged as the best-performing classifier, achieving an accuracy of 98.11% and an AUC of 0.99. Notably, Random Tree (RT) exhibited the highest accuracy within the ensemble classifier set, with a significant increase compared to other models. Our proposed method outperformed the standard approach, demonstrating its potential for enhancing brain tumor detection accuracy. This study contributes to the field by providing a more accurate method for detecting brain tumors, potentially enabling earlier detection and improved patient outcomes. Future research should focus on further improving brain tumor diagnosis and treatment through the application of machine learning techniques.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.4.397-404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate brain tumor detection is crucial due to its high mortality rate. However, existing automated methods suffer from limited accuracy and high false-positive rates. In this study, we aimed to improve brain tumor classification by comparing 17 different classifiers organized into six groups: Decision Tree (DT) Model, Support Vector Machine (SVM), Naive Bayes Classifier, Logistic Regression, Generalized Linear Model (GLM) Classifier, and Neural Network. We utilized a dataset of 3,762 Magnetic Resonance Imaging (MRI) scans of brain tumors from Kaggle, with each image having dimensions of 240 × 240 pixels and labeled as tumor or non-tumor. Our approach involved three main steps: extracting visual information using 17 predictor classes, optimizing feature extraction through weight optimization, and comparing different sets of classifier models. We evaluated the models’ performance using the confusion matrix and Receiver Operating Characteristics (ROC) curves. Our results showed that optimizing feature selection and utilizing ensemble classifiers improved the accuracy of brain tumor classification. The DT Model with ensemble classifiers emerged as the best-performing classifier, achieving an accuracy of 98.11% and an AUC of 0.99. Notably, Random Tree (RT) exhibited the highest accuracy within the ensemble classifier set, with a significant increase compared to other models. Our proposed method outperformed the standard approach, demonstrating its potential for enhancing brain tumor detection accuracy. This study contributes to the field by providing a more accurate method for detecting brain tumors, potentially enabling earlier detection and improved patient outcomes. Future research should focus on further improving brain tumor diagnosis and treatment through the application of machine learning techniques.
中国图象图形学报Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍:
Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics.
Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art.
Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.