{"title":"An Enhanced Security in Medical Image Encryption Using Dynamic Chaotic Fuzzy Based Technique","authors":"Snehashish Bhattacharjee, Mousumi Gupta, Biswajoy Chatterjee","doi":"10.18178/joig.11.4.376-383","DOIUrl":null,"url":null,"abstract":"As IoT and cloud computing have grown in popularity, medical images are now often transmitted between devices or accessed directly from the cloud. With this, the security is always a concern as these images are prone to many types of attack. We have proposed a proven method that is efficient in terms of security, time complexity, and integrity in order to be cloud-friendly so that it may be launched into the cloud and made accessible to users at any time. The goal of the work is to create a dynamic key that, depending on fuzzy values, alters the reproduction rate parameters with each repetition. By applying the last chaotic value created from the previous iteration, the fuzzy triangular membership function has been used in this manner to generate the reproduction rate parameter. The uniqueness and major benefit of the suggested strategy are that it can increase the security of the algorithm that makes use of a chaotic map and a static key. The method has been put forth when designing algorithms so that it should not only demonstrate security against different attacks but also provide efficiency towards computational complexity. The technique has been tested against a set of images and an existing algorithm using a variety of security metrics, including the correlation coefficient, Number of Pixel Change Rate (NPCR), Unified Average Changing Intensity (UACI), and entropy. It has been determined from the comparative analysis that the proposed approach can make the existing algorithm more secure.","PeriodicalId":36336,"journal":{"name":"中国图象图形学报","volume":"121 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国图象图形学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.18178/joig.11.4.376-383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
As IoT and cloud computing have grown in popularity, medical images are now often transmitted between devices or accessed directly from the cloud. With this, the security is always a concern as these images are prone to many types of attack. We have proposed a proven method that is efficient in terms of security, time complexity, and integrity in order to be cloud-friendly so that it may be launched into the cloud and made accessible to users at any time. The goal of the work is to create a dynamic key that, depending on fuzzy values, alters the reproduction rate parameters with each repetition. By applying the last chaotic value created from the previous iteration, the fuzzy triangular membership function has been used in this manner to generate the reproduction rate parameter. The uniqueness and major benefit of the suggested strategy are that it can increase the security of the algorithm that makes use of a chaotic map and a static key. The method has been put forth when designing algorithms so that it should not only demonstrate security against different attacks but also provide efficiency towards computational complexity. The technique has been tested against a set of images and an existing algorithm using a variety of security metrics, including the correlation coefficient, Number of Pixel Change Rate (NPCR), Unified Average Changing Intensity (UACI), and entropy. It has been determined from the comparative analysis that the proposed approach can make the existing algorithm more secure.
中国图象图形学报Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.20
自引率
0.00%
发文量
6776
期刊介绍:
Journal of Image and Graphics (ISSN 1006-8961, CN 11-3758/TB, CODEN ZTTXFZ) is an authoritative academic journal supervised by the Chinese Academy of Sciences and co-sponsored by the Institute of Space and Astronautical Information Innovation of the Chinese Academy of Sciences (ISIAS), the Chinese Society of Image and Graphics (CSIG), and the Beijing Institute of Applied Physics and Computational Mathematics (BIAPM). The journal integrates high-tech theories, technical methods and industrialisation of applied research results in computer image graphics, and mainly publishes innovative and high-level scientific research papers on basic and applied research in image graphics science and its closely related fields. The form of papers includes reviews, technical reports, project progress, academic news, new technology reviews, new product introduction and industrialisation research. The content covers a wide range of fields such as image analysis and recognition, image understanding and computer vision, computer graphics, virtual reality and augmented reality, system simulation, animation, etc., and theme columns are opened according to the research hotspots and cutting-edge topics.
Journal of Image and Graphics reaches a wide range of readers, including scientific and technical personnel, enterprise supervisors, and postgraduates and college students of colleges and universities engaged in the fields of national defence, military, aviation, aerospace, communications, electronics, automotive, agriculture, meteorology, environmental protection, remote sensing, mapping, oil field, construction, transportation, finance, telecommunications, education, medical care, film and television, and art.
Journal of Image and Graphics is included in many important domestic and international scientific literature database systems, including EBSCO database in the United States, JST database in Japan, Scopus database in the Netherlands, China Science and Technology Thesis Statistics and Analysis (Annual Research Report), China Science Citation Database (CSCD), China Academic Journal Network Publishing Database (CAJD), and China Academic Journal Network Publishing Database (CAJD). China Science Citation Database (CSCD), China Academic Journals Network Publishing Database (CAJD), China Academic Journal Abstracts, Chinese Science Abstracts (Series A), China Electronic Science Abstracts, Chinese Core Journals Abstracts, Chinese Academic Journals on CD-ROM, and China Academic Journals Comprehensive Evaluation Database.