Marco A. V. Silva Júnior, Mariani A. Leite, G. Dacanal
{"title":"Modelling of convective drying of potatoes polyhedrons","authors":"Marco A. V. Silva Júnior, Mariani A. Leite, G. Dacanal","doi":"10.1515/ijfe-2023-0016","DOIUrl":null,"url":null,"abstract":"Abstract This work aimed to develop numerical models to predict the moisture content and deformation of potato slices during convective drying (40–80 °C, 0.5 m·s−1). Three-dimensional slices were considered in cylindrical, cubic, parallelepiped, and prism geometries. The first classic model coupled the linear constant drying rate period with the analytical solution of Fick’s law in spherical coordinates, evaluating the mass diffusion coefficients (4.2–15.5·10−10 m2·s−1), critical drying time (1640–5085 s), and critical moisture content (1.8–2.4 kg·kg−1). The Finite Element Method (FEM) was a more robust model, that combined momentum and mass transfer to three-dimensional solid deformation of polyhedrons by ALE method, evaluating the mass diffusivity (1.4–6.5·10−10 m2·s−1). The FEM model could predict the shrinkage due to water molar flux removal on moving solid boundaries and explain the pseudo-constant drying rate detected in experimental data. The developed models accurately described the drying of food materials with a high shrinkage ratio.","PeriodicalId":49054,"journal":{"name":"International Journal of Food Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1515/ijfe-2023-0016","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This work aimed to develop numerical models to predict the moisture content and deformation of potato slices during convective drying (40–80 °C, 0.5 m·s−1). Three-dimensional slices were considered in cylindrical, cubic, parallelepiped, and prism geometries. The first classic model coupled the linear constant drying rate period with the analytical solution of Fick’s law in spherical coordinates, evaluating the mass diffusion coefficients (4.2–15.5·10−10 m2·s−1), critical drying time (1640–5085 s), and critical moisture content (1.8–2.4 kg·kg−1). The Finite Element Method (FEM) was a more robust model, that combined momentum and mass transfer to three-dimensional solid deformation of polyhedrons by ALE method, evaluating the mass diffusivity (1.4–6.5·10−10 m2·s−1). The FEM model could predict the shrinkage due to water molar flux removal on moving solid boundaries and explain the pseudo-constant drying rate detected in experimental data. The developed models accurately described the drying of food materials with a high shrinkage ratio.
期刊介绍:
International Journal of Food Engineering is devoted to engineering disciplines related to processing foods. The areas of interest include heat, mass transfer and fluid flow in food processing; food microstructure development and characterization; application of artificial intelligence in food engineering research and in industry; food biotechnology; and mathematical modeling and software development for food processing purposes. Authors and editors come from top engineering programs around the world: the U.S., Canada, the U.K., and Western Europe, but also South America, Asia, Africa, and the Middle East.