Dian Shofinita, Dianika Lestari, Ronny Purwadi, G. A. Sumampouw, K. C. Gunawan, S. A. Ambarwati, A. B. Achmadi, Jason T. Tjahjadi
{"title":"Effects of different decaffeination methods on caffeine contents, physicochemical, and sensory properties of coffee","authors":"Dian Shofinita, Dianika Lestari, Ronny Purwadi, G. A. Sumampouw, K. C. Gunawan, S. A. Ambarwati, A. B. Achmadi, Jason T. Tjahjadi","doi":"10.1515/ijfe-2024-0013","DOIUrl":null,"url":null,"abstract":"\n Coffee consumption could provide various benefits for human health, but also could contribute to several health problems. The growing trend of coffee consumption has created a rising demand for decaffeinated coffee that is safe for consumers with low caffeine tolerance. Decaffeination process, however, can result in the alteration of several properties of coffee which affect overall coffee taste. This review discussed current decaffeination methods such as water decaffeination, solvent decaffeination, supercritical decaffeination, and biodecaffeination which includes their mechanisms, benefits, and drawbacks as well as their effect in the physicochemical and sensory characteristics of coffee. Solvent decaffeination has showed potential improvements in the future such as the incorporation of membrane and ultrasonic technology. In addition, the mathematical model for caffeine diffusion has been arranged according to Fick’s second law of diffusion, based upon spherical and rectangular coordinates with several assumptions. Further research should be aimed to maintain the properties of coffee after decaffeination process. Furthermore, utilizing new solvents that are safe and non-toxic will potentially be favorable research in the development of decaffeination methods in the future.","PeriodicalId":49054,"journal":{"name":"International Journal of Food Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1515/ijfe-2024-0013","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Coffee consumption could provide various benefits for human health, but also could contribute to several health problems. The growing trend of coffee consumption has created a rising demand for decaffeinated coffee that is safe for consumers with low caffeine tolerance. Decaffeination process, however, can result in the alteration of several properties of coffee which affect overall coffee taste. This review discussed current decaffeination methods such as water decaffeination, solvent decaffeination, supercritical decaffeination, and biodecaffeination which includes their mechanisms, benefits, and drawbacks as well as their effect in the physicochemical and sensory characteristics of coffee. Solvent decaffeination has showed potential improvements in the future such as the incorporation of membrane and ultrasonic technology. In addition, the mathematical model for caffeine diffusion has been arranged according to Fick’s second law of diffusion, based upon spherical and rectangular coordinates with several assumptions. Further research should be aimed to maintain the properties of coffee after decaffeination process. Furthermore, utilizing new solvents that are safe and non-toxic will potentially be favorable research in the development of decaffeination methods in the future.
期刊介绍:
International Journal of Food Engineering is devoted to engineering disciplines related to processing foods. The areas of interest include heat, mass transfer and fluid flow in food processing; food microstructure development and characterization; application of artificial intelligence in food engineering research and in industry; food biotechnology; and mathematical modeling and software development for food processing purposes. Authors and editors come from top engineering programs around the world: the U.S., Canada, the U.K., and Western Europe, but also South America, Asia, Africa, and the Middle East.