M. Alkadri, Francesco De Luca, M. Turrin, Muhammad Rafif Cahyadi Agung
{"title":"QUICK PROTOCOL FOR INTEGRATING THE ATTRIBUTE INFORMATION OF UNSTRUCTURED POINT CLOUD DATA INTO A SOLAR ENVELOPE SIMULATION","authors":"M. Alkadri, Francesco De Luca, M. Turrin, Muhammad Rafif Cahyadi Agung","doi":"10.3992/jgb.18.4.3","DOIUrl":null,"url":null,"abstract":"\n This study proposes a novel method of solar geometry by considering the potential application of point cloud data combined with the simulation of solar radiation. With the support of geometric and radiometric information stored in the point cloud such as position information (XYZ) color information (RGB), and reflection intensity (I), architects may compensate for missing information on the existing context during the simulation, especially due to the limited capacity of current 3D modelling sites. However, the dataset often comes in the format of unstructured point cloud data retrieved from merged data scans and as a result, the radiometric information is difficult to occupy due to multiple reference points. Through a 3D subtractive procedure, this study not only examines volumetric samples of the three-dimensional matrix that fulfills the criteria of solar envelopes but also finds the optimal values of the merged data scan for input of solar radiation. In this regard, simulation of solar radiation contributes to identifying the most and the least exposed areas to the sun in existing contexts. This provides information related to visible sun hours that can be used to perform ray tracing analysis between the proposed 3D plot and surrounding contexts. Our proposed method ultimately helps architects not only generate solar geometry based on real contextual settings but also to understand comprehensively the microclimate conditions of the design context.","PeriodicalId":51753,"journal":{"name":"Journal of Green Building","volume":" 30","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Green Building","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3992/jgb.18.4.3","RegionNum":4,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a novel method of solar geometry by considering the potential application of point cloud data combined with the simulation of solar radiation. With the support of geometric and radiometric information stored in the point cloud such as position information (XYZ) color information (RGB), and reflection intensity (I), architects may compensate for missing information on the existing context during the simulation, especially due to the limited capacity of current 3D modelling sites. However, the dataset often comes in the format of unstructured point cloud data retrieved from merged data scans and as a result, the radiometric information is difficult to occupy due to multiple reference points. Through a 3D subtractive procedure, this study not only examines volumetric samples of the three-dimensional matrix that fulfills the criteria of solar envelopes but also finds the optimal values of the merged data scan for input of solar radiation. In this regard, simulation of solar radiation contributes to identifying the most and the least exposed areas to the sun in existing contexts. This provides information related to visible sun hours that can be used to perform ray tracing analysis between the proposed 3D plot and surrounding contexts. Our proposed method ultimately helps architects not only generate solar geometry based on real contextual settings but also to understand comprehensively the microclimate conditions of the design context.
期刊介绍:
The purpose of the Journal of Green Building is to present the very best peer-reviewed research in green building design, construction, engineering, technological innovation, facilities management, building information modeling, and community and urban planning. The Research section of the Journal of Green Building publishes peer-reviewed articles in the fields of engineering, architecture, construction, construction management, building science, facilities management, landscape architecture, interior design, urban and community planning, and all disciplines related to the built environment. In addition, the Journal of Green Building offers the following sections: Industry Corner that offers applied articles of successfully completed sustainable buildings and landscapes; New Directions in Teaching and Research that offers guidance from teachers and researchers on incorporating innovative sustainable learning into the curriculum or the likely directions of future research; and Campus Sustainability that offers articles from programs dedicated to greening the university campus.