Benchmarking topic models on scientific articles using BERTeley

Eric Chagnon, Ronald Pandolfi, Jeffrey Donatelli, Daniela Ushizima
{"title":"Benchmarking topic models on scientific articles using BERTeley","authors":"Eric Chagnon,&nbsp;Ronald Pandolfi,&nbsp;Jeffrey Donatelli,&nbsp;Daniela Ushizima","doi":"10.1016/j.nlp.2023.100044","DOIUrl":null,"url":null,"abstract":"<div><p>The introduction of BERTopic marked a crucial advancement in topic modeling and presented a topic model that outperformed both traditional and modern topic models in terms of topic modeling metrics on a variety of corpora. However, unique issues arise when topic modeling is performed on scientific articles. This paper introduces BERTeley, an innovative tool built upon BERTopic, designed to alleviate these shortcomings and improve the usability of BERTopic when conducting topic modeling on a corpus consisting of scientific articles. This is accomplished through BERTeley’s three main features: scientific article preprocessing, topic modeling using pre-trained scientific language models, and topic model metric calculation. Furthermore, an experiment was conducted comparing topic models using four different language models in three corpora consisting of scientific articles.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"6 ","pages":"Article 100044"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949719123000419/pdfft?md5=ba7f61749a42e9736def8c59c69a58d2&pid=1-s2.0-S2949719123000419-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719123000419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The introduction of BERTopic marked a crucial advancement in topic modeling and presented a topic model that outperformed both traditional and modern topic models in terms of topic modeling metrics on a variety of corpora. However, unique issues arise when topic modeling is performed on scientific articles. This paper introduces BERTeley, an innovative tool built upon BERTopic, designed to alleviate these shortcomings and improve the usability of BERTopic when conducting topic modeling on a corpus consisting of scientific articles. This is accomplished through BERTeley’s three main features: scientific article preprocessing, topic modeling using pre-trained scientific language models, and topic model metric calculation. Furthermore, an experiment was conducted comparing topic models using four different language models in three corpora consisting of scientific articles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 BERTeley 对科学文章的主题模型进行基准测试
BERTopic的引入标志着主题建模的一个重要进步,并提出了一个在各种语料库上的主题建模指标方面优于传统和现代主题模型的主题模型。然而,当对科学文章进行主题建模时,会出现一些独特的问题。本文介绍了BERTeley,一个基于BERTopic的创新工具,旨在缓解这些缺点,并提高BERTopic在由科学文章组成的语料库上进行主题建模时的可用性。这是通过BERTeley的三个主要功能来完成的:科学文章预处理,使用预训练的科学语言模型进行主题建模,以及主题模型度量计算。在此基础上,对三种科技文章语料库中使用四种不同语言模型的主题模型进行了对比实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uzbek language morphology analyser Evaluation of google translate for Mandarin Chinese translation using sentiment and semantic analysis Bridging gaps in natural language processing for Yorùbá: A systematic review of a decade of progress and prospects Llama3SP: A resource-Efficient large language model for agile story point estimation A systematic review of figurative language detection: Methods, challenges, and multilingual perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1