Evaluation of a Method to Induce Hydrophobicity on Sand

IF 1.5 3区 农林科学 Q2 HORTICULTURE Hortscience Pub Date : 2023-12-01 DOI:10.21273/hortsci16963-22
M. McMillan, Karen Williams, Kimberly Moore, Samira Daroub, John E. Erickson, Stanley Kostka, Michael Fidanza
{"title":"Evaluation of a Method to Induce Hydrophobicity on Sand","authors":"M. McMillan, Karen Williams, Kimberly Moore, Samira Daroub, John E. Erickson, Stanley Kostka, Michael Fidanza","doi":"10.21273/hortsci16963-22","DOIUrl":null,"url":null,"abstract":"Methods to evaluate soil water repellency (SWR) require extensive studies on field soils and are subject to the heterogeneity of SWR throughout the soil profile as well as plant/soil interactions. The objectives of this study were to develop a synthetic method to create hydrophobic sand, and to determine if that hydrophobic sand would affect the establishment of bermudagrass (Cynodon dactylon L. Pers. × C. transvaalensis Burtt-Davy, cv. Tifeagle) sprigs. Two techniques were developed to render sand hydrophobic: soap:sand method (hydrophobic sand; HSS) and sand:peat method (hydrophobic sand and read sedge peat; HSP). Both HSS and HSP remained severely hydrophobic at 0 cm depth for only 7 d, and at the 1- to 6-cm depth for 77 continuous days, as determined by water drop penetration time. Bermudagrass establishment, root growth, or shoot growth in two greenhouse experiments with four root zone substrates–HSS, HSP, WSAND (wettable sand), and WSP (wettable sand and reed sedge peat)—were not consistent. In conclusion, both HSS and HSP were shown to be safe and effective methods to synthetically produce hydrophobic sand for potential use in laboratory research, but further evaluation is needed to determine the feasibility of using HSS and HSP for turfgrass growth evaluations.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":"51 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hortscience","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/hortsci16963-22","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Methods to evaluate soil water repellency (SWR) require extensive studies on field soils and are subject to the heterogeneity of SWR throughout the soil profile as well as plant/soil interactions. The objectives of this study were to develop a synthetic method to create hydrophobic sand, and to determine if that hydrophobic sand would affect the establishment of bermudagrass (Cynodon dactylon L. Pers. × C. transvaalensis Burtt-Davy, cv. Tifeagle) sprigs. Two techniques were developed to render sand hydrophobic: soap:sand method (hydrophobic sand; HSS) and sand:peat method (hydrophobic sand and read sedge peat; HSP). Both HSS and HSP remained severely hydrophobic at 0 cm depth for only 7 d, and at the 1- to 6-cm depth for 77 continuous days, as determined by water drop penetration time. Bermudagrass establishment, root growth, or shoot growth in two greenhouse experiments with four root zone substrates–HSS, HSP, WSAND (wettable sand), and WSP (wettable sand and reed sedge peat)—were not consistent. In conclusion, both HSS and HSP were shown to be safe and effective methods to synthetically produce hydrophobic sand for potential use in laboratory research, but further evaluation is needed to determine the feasibility of using HSS and HSP for turfgrass growth evaluations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估在沙子上诱导疏水性的方法
评估土壤拒水性(SWR)的方法需要对田间土壤进行广泛的研究,并受到整个土壤剖面中土壤拒水性的异质性以及植物/土壤相互作用的影响。本研究的目的是建立一种合成疏水砂的方法,并确定疏水砂是否会影响百慕大草(Cynodon dactylon L. Pers)的生长。× C. transvaalensis Burtt-Davy, cv。Tifeagle)枝。开发了两种使砂具有疏水性的技术:皂砂法(疏水性砂;HSS)和砂:泥炭法(疏水砂和读莎草泥炭;HSP)。通过水滴渗透时间测定,HSS和HSP在0 cm深度仅持续7 d,在1 ~ 6 cm深度持续77天。在4种根区基质——hss、HSP、WSAND(可湿性砂)和WSP(可湿性砂和芦苇莎草泥炭)的2个温室试验中,百德草的建立、根生长或地上部生长均不一致。综上所述,HSS和HSP都是安全有效的合成疏水砂的方法,具有实验室研究的潜力,但需要进一步评估HSS和HSP用于草坪草生长评价的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hortscience
Hortscience 农林科学-园艺
CiteScore
3.00
自引率
10.50%
发文量
224
审稿时长
3 months
期刊介绍: HortScience publishes horticultural information of interest to a broad array of horticulturists. Its goals are to apprise horticultural scientists and others interested in horticulture of scientific and industry developments and of significant research, education, or extension findings or methods.
期刊最新文献
Traffic Tolerance of Perennial Ryegrass (Lolium perenne L.) Cultivars as Affected by Nitrogen Fertilization Own-rooted Walnut Propagule of Four Walnut (Juglans) Rootstocks and Main Cultivated Cultivar Liaoning 1 Acquirement through Layering under Field Conditions Genetic Variability of Traffic Tolerance and Surface Playability of Bermudagrass (Cynodon spp.) under Fall Simulated Traffic Stress Ning Qing 4: A New Holly Cultivar with Elliptic and Serrated Leaves ‘Ning Qing 2’: A New Dwarf Holly Cultivar with Small Serrated Leaves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1