{"title":"Traffic Tolerance of Perennial Ryegrass (Lolium perenne L.) Cultivars as Affected by Nitrogen Fertilization","authors":"C. Pornaro, Gerald Henry, S. Macolino","doi":"10.21273/hortsci17479-23","DOIUrl":null,"url":null,"abstract":"Perennial ryegrass (Lolium perenne L.) is one of the most widely used species for sports fields in temperate climates because of its high wear tolerance. However, wear tolerance of cultivars may vary according to local environmental conditions and turfgrass management. In this study, we evaluated the wear tolerance of six perennial ryegrass cultivars (Adagio, Apple SGL, Equate, Firebird, Principal 2, Tetradark) under two fertility treatments (100 or 200 kg N⋅ha−1⋅yr−1) over 2 years. The field trial was performed at the Experimental Agricultural Farm at the University of Padova in northeastern Italy in a silty loam soil. Plots were arranged in a randomized complete block with three replications and subjected to three traffic events per week using a sports field wear simulator. Turfgrass quality (TQ), percent green cover (PGC), and normalized difference vegetation index (NDVI) were recorded every 2 weeks and averaged over each month. Although perennial ryegrass cultivars responded differently to wear stress, the higher nitrogen (N) rate positively affected the TQ of them all. ‘Tetradrak’ and ‘Equate’ had the lowest TQ, especially during the active growing seasons (spring and autumn). However, ‘Tetradark’ was particularly negatively affected during the cool fall months. The impact of a higher N fertilization rate on PGC and NDVI appeared to be more pronounced in spring than in fall. Furthermore, slight differences among cultivars and treatments were observed in summer and winter when temperatures were a limiting growth factor.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":"7 23","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hortscience","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/hortsci17479-23","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Perennial ryegrass (Lolium perenne L.) is one of the most widely used species for sports fields in temperate climates because of its high wear tolerance. However, wear tolerance of cultivars may vary according to local environmental conditions and turfgrass management. In this study, we evaluated the wear tolerance of six perennial ryegrass cultivars (Adagio, Apple SGL, Equate, Firebird, Principal 2, Tetradark) under two fertility treatments (100 or 200 kg N⋅ha−1⋅yr−1) over 2 years. The field trial was performed at the Experimental Agricultural Farm at the University of Padova in northeastern Italy in a silty loam soil. Plots were arranged in a randomized complete block with three replications and subjected to three traffic events per week using a sports field wear simulator. Turfgrass quality (TQ), percent green cover (PGC), and normalized difference vegetation index (NDVI) were recorded every 2 weeks and averaged over each month. Although perennial ryegrass cultivars responded differently to wear stress, the higher nitrogen (N) rate positively affected the TQ of them all. ‘Tetradrak’ and ‘Equate’ had the lowest TQ, especially during the active growing seasons (spring and autumn). However, ‘Tetradark’ was particularly negatively affected during the cool fall months. The impact of a higher N fertilization rate on PGC and NDVI appeared to be more pronounced in spring than in fall. Furthermore, slight differences among cultivars and treatments were observed in summer and winter when temperatures were a limiting growth factor.
期刊介绍:
HortScience publishes horticultural information of interest to a broad array of horticulturists. Its goals are to apprise horticultural scientists and others interested in horticulture of scientific and industry developments and of significant research, education, or extension findings or methods.