Huazhen Liu, Yi Zhang, Zhian Jian, Chuang Gao, Chunxiang Lu, Qiqi Dai, Hao Qiao, Yuanyuan Liu
{"title":"A novel portable in situ printer for hydrogel multi-structure molding and cell printing","authors":"Huazhen Liu, Yi Zhang, Zhian Jian, Chuang Gao, Chunxiang Lu, Qiqi Dai, Hao Qiao, Yuanyuan Liu","doi":"10.1063/5.0176301","DOIUrl":null,"url":null,"abstract":"Skin lesions not only disrupt appearance and barrier functionality but also lead to severe microbial infections and immune-inflammatory responses, seriously affect physical and mental health. In situ printing involves the direct deposition of bio-ink to create or repair damaged tissues or organs within a clinical setting. In this study, we designed and fabricated a novel portable in situ printer. This handheld instrument exhibits excellent printing performance, allowing hydrogels to be patterned and molded on surfaces according to specific requirements. By utilizing a dual-component hydrogels co-printing approach with high and low viscosities, we achieved in situ cell-laden printing using low-viscosity hydrogel. This demonstrates the advantages of the device in maintaining cell viability and achieving hydrogel structuring. This approach opens up the possibilities for the efficient encapsulation of active components such as drugs, proteins, and cells, enabling controlled macro- and micro-structuring of hydrogels. This breakthrough finding highlights the potential of our technical approach in dermatological treatment and wound repair, by dynamically adapting and regulating microenvironments in conjunction with hydrogel scaffolds and cell reparative impetus.","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"6 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0176301","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Skin lesions not only disrupt appearance and barrier functionality but also lead to severe microbial infections and immune-inflammatory responses, seriously affect physical and mental health. In situ printing involves the direct deposition of bio-ink to create or repair damaged tissues or organs within a clinical setting. In this study, we designed and fabricated a novel portable in situ printer. This handheld instrument exhibits excellent printing performance, allowing hydrogels to be patterned and molded on surfaces according to specific requirements. By utilizing a dual-component hydrogels co-printing approach with high and low viscosities, we achieved in situ cell-laden printing using low-viscosity hydrogel. This demonstrates the advantages of the device in maintaining cell viability and achieving hydrogel structuring. This approach opens up the possibilities for the efficient encapsulation of active components such as drugs, proteins, and cells, enabling controlled macro- and micro-structuring of hydrogels. This breakthrough finding highlights the potential of our technical approach in dermatological treatment and wound repair, by dynamically adapting and regulating microenvironments in conjunction with hydrogel scaffolds and cell reparative impetus.
期刊介绍:
APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.
APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes:
-Biofabrication and Bioprinting
-Biomedical Materials, Sensors, and Imaging
-Engineered Living Systems
-Cell and Tissue Engineering
-Regenerative Medicine
-Molecular, Cell, and Tissue Biomechanics
-Systems Biology and Computational Biology